![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dig2nn1st | Structured version Visualization version GIF version |
Description: The first (relevant) digit of a positive integer in a binary system is 1. (Contributed by AV, 26-May-2020.) |
Ref | Expression |
---|---|
dig2nn1st | ⊢ (𝑁 ∈ ℕ → (((#b‘𝑁) − 1)(digit‘2)𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12323 | . . . 4 ⊢ 2 ∈ ℕ | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℕ) |
3 | blennnelnn 47840 | . . . 4 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) ∈ ℕ) | |
4 | nnm1nn0 12551 | . . . 4 ⊢ ((#b‘𝑁) ∈ ℕ → ((#b‘𝑁) − 1) ∈ ℕ0) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) − 1) ∈ ℕ0) |
6 | nnre 12257 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
7 | nnnn0 12517 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
8 | 7 | nn0ge0d 12573 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
9 | elrege0 13471 | . . . 4 ⊢ (𝑁 ∈ (0[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁)) | |
10 | 6, 8, 9 | sylanbrc 581 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (0[,)+∞)) |
11 | nn0digval 47864 | . . 3 ⊢ ((2 ∈ ℕ ∧ ((#b‘𝑁) − 1) ∈ ℕ0 ∧ 𝑁 ∈ (0[,)+∞)) → (((#b‘𝑁) − 1)(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) mod 2)) | |
12 | 2, 5, 10, 11 | syl3anc 1368 | . 2 ⊢ (𝑁 ∈ ℕ → (((#b‘𝑁) − 1)(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) mod 2)) |
13 | n2dvds1 16356 | . . . 4 ⊢ ¬ 2 ∥ 1 | |
14 | blennn 47839 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
15 | 14 | oveq1d 7434 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) − 1) = (((⌊‘(2 logb 𝑁)) + 1) − 1)) |
16 | 2z 12632 | . . . . . . . . . . . . . . 15 ⊢ 2 ∈ ℤ | |
17 | uzid 12875 | . . . . . . . . . . . . . . 15 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . . . . . . . 14 ⊢ 2 ∈ (ℤ≥‘2) |
19 | nnrp 13025 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
20 | relogbzcl 26771 | . . . . . . . . . . . . . 14 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℝ+) → (2 logb 𝑁) ∈ ℝ) | |
21 | 18, 19, 20 | sylancr 585 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ) |
22 | 21 | flcld 13804 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ) |
23 | 22 | zcnd 12705 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ) |
24 | pncan1 11675 | . . . . . . . . . . 11 ⊢ ((⌊‘(2 logb 𝑁)) ∈ ℂ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) | |
25 | 23, 24 | syl 17 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁))) |
26 | 15, 25 | eqtrd 2765 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) − 1) = (⌊‘(2 logb 𝑁))) |
27 | 26 | oveq2d 7435 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) = (2↑(⌊‘(2 logb 𝑁)))) |
28 | 27 | oveq2d 7435 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 / (2↑((#b‘𝑁) − 1))) = (𝑁 / (2↑(⌊‘(2 logb 𝑁))))) |
29 | 28 | fveq2d 6900 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) = (⌊‘(𝑁 / (2↑(⌊‘(2 logb 𝑁)))))) |
30 | fldivexpfllog2 47829 | . . . . . . 7 ⊢ (𝑁 ∈ ℝ+ → (⌊‘(𝑁 / (2↑(⌊‘(2 logb 𝑁))))) = 1) | |
31 | 19, 30 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑(⌊‘(2 logb 𝑁))))) = 1) |
32 | 29, 31 | eqtrd 2765 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) = 1) |
33 | 32 | breq2d 5161 | . . . 4 ⊢ (𝑁 ∈ ℕ → (2 ∥ (⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) ↔ 2 ∥ 1)) |
34 | 13, 33 | mtbiri 326 | . . 3 ⊢ (𝑁 ∈ ℕ → ¬ 2 ∥ (⌊‘(𝑁 / (2↑((#b‘𝑁) − 1))))) |
35 | 2re 12324 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
36 | 35 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) |
37 | 36, 5 | reexpcld 14168 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) ∈ ℝ) |
38 | 2cnd 12328 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) | |
39 | 2ne0 12354 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
40 | 39 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 2 ≠ 0) |
41 | 5 | nn0zd 12622 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → ((#b‘𝑁) − 1) ∈ ℤ) |
42 | 38, 40, 41 | expne0d 14157 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑((#b‘𝑁) − 1)) ≠ 0) |
43 | 6, 37, 42 | redivcld 12080 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 / (2↑((#b‘𝑁) − 1))) ∈ ℝ) |
44 | 43 | flcld 13804 | . . . 4 ⊢ (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) ∈ ℤ) |
45 | mod2eq1n2dvds 16335 | . . . 4 ⊢ ((⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) ∈ ℤ → (((⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))))) | |
46 | 44, 45 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ → (((⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))))) |
47 | 34, 46 | mpbird 256 | . 2 ⊢ (𝑁 ∈ ℕ → ((⌊‘(𝑁 / (2↑((#b‘𝑁) − 1)))) mod 2) = 1) |
48 | 12, 47 | eqtrd 2765 | 1 ⊢ (𝑁 ∈ ℕ → (((#b‘𝑁) − 1)(digit‘2)𝑁) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 ℂcc 11143 ℝcr 11144 0cc0 11145 1c1 11146 + caddc 11148 +∞cpnf 11282 ≤ cle 11286 − cmin 11481 / cdiv 11908 ℕcn 12250 2c2 12305 ℕ0cn0 12510 ℤcz 12596 ℤ≥cuz 12860 ℝ+crp 13014 [,)cico 13366 ⌊cfl 13796 mod cmo 13875 ↑cexp 14067 ∥ cdvds 16242 logb clogb 26761 #bcblen 47833 digitcdig 47859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9671 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 ax-addf 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-fi 9441 df-sup 9472 df-inf 9473 df-oi 9540 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-q 12971 df-rp 13015 df-xneg 13132 df-xadd 13133 df-xmul 13134 df-ioo 13368 df-ioc 13369 df-ico 13370 df-icc 13371 df-fz 13525 df-fzo 13668 df-fl 13798 df-mod 13876 df-seq 14008 df-exp 14068 df-fac 14277 df-bc 14306 df-hash 14334 df-shft 15058 df-cj 15090 df-re 15091 df-im 15092 df-sqrt 15226 df-abs 15227 df-limsup 15459 df-clim 15476 df-rlim 15477 df-sum 15677 df-ef 16055 df-sin 16057 df-cos 16058 df-pi 16060 df-dvds 16243 df-struct 17135 df-sets 17152 df-slot 17170 df-ndx 17182 df-base 17200 df-ress 17229 df-plusg 17265 df-mulr 17266 df-starv 17267 df-sca 17268 df-vsca 17269 df-ip 17270 df-tset 17271 df-ple 17272 df-ds 17274 df-unif 17275 df-hom 17276 df-cco 17277 df-rest 17423 df-topn 17424 df-0g 17442 df-gsum 17443 df-topgen 17444 df-pt 17445 df-prds 17448 df-xrs 17503 df-qtop 17508 df-imas 17509 df-xps 17511 df-mre 17585 df-mrc 17586 df-acs 17588 df-mgm 18619 df-sgrp 18698 df-mnd 18714 df-submnd 18760 df-mulg 19048 df-cntz 19297 df-cmn 19766 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22857 df-topon 22874 df-topsp 22896 df-bases 22910 df-cld 22984 df-ntr 22985 df-cls 22986 df-nei 23063 df-lp 23101 df-perf 23102 df-cn 23192 df-cnp 23193 df-haus 23280 df-tx 23527 df-hmeo 23720 df-fil 23811 df-fm 23903 df-flim 23904 df-flf 23905 df-xms 24287 df-ms 24288 df-tms 24289 df-cncf 24859 df-limc 25856 df-dv 25857 df-log 26552 df-cxp 26553 df-logb 26762 df-blen 47834 df-dig 47860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |