Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dig2nn1st Structured version   Visualization version   GIF version

Theorem dig2nn1st 44958
Description: The first (relevant) digit of a positive integer in a binary system is 1. (Contributed by AV, 26-May-2020.)
Assertion
Ref Expression
dig2nn1st (𝑁 ∈ ℕ → (((#b𝑁) − 1)(digit‘2)𝑁) = 1)

Proof of Theorem dig2nn1st
StepHypRef Expression
1 2nn 11698 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 (𝑁 ∈ ℕ → 2 ∈ ℕ)
3 blennnelnn 44929 . . . 4 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ)
4 nnm1nn0 11926 . . . 4 ((#b𝑁) ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
53, 4syl 17 . . 3 (𝑁 ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
6 nnre 11632 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7 nnnn0 11892 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
87nn0ge0d 11946 . . . 4 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
9 elrege0 12832 . . . 4 (𝑁 ∈ (0[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
106, 8, 9sylanbrc 586 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ (0[,)+∞))
11 nn0digval 44953 . . 3 ((2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (((#b𝑁) − 1)(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2))
122, 5, 10, 11syl3anc 1368 . 2 (𝑁 ∈ ℕ → (((#b𝑁) − 1)(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2))
13 n2dvds1 15708 . . . 4 ¬ 2 ∥ 1
14 blennn 44928 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
1514oveq1d 7155 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((#b𝑁) − 1) = (((⌊‘(2 logb 𝑁)) + 1) − 1))
16 2z 12002 . . . . . . . . . . . . . . 15 2 ∈ ℤ
17 uzid 12246 . . . . . . . . . . . . . . 15 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
1816, 17ax-mp 5 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘2)
19 nnrp 12388 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
20 relogbzcl 25358 . . . . . . . . . . . . . 14 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (2 logb 𝑁) ∈ ℝ)
2118, 19, 20sylancr 590 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ)
2221flcld 13163 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ)
2322zcnd 12076 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ)
24 pncan1 11053 . . . . . . . . . . 11 ((⌊‘(2 logb 𝑁)) ∈ ℂ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁)))
2523, 24syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁)))
2615, 25eqtrd 2857 . . . . . . . . 9 (𝑁 ∈ ℕ → ((#b𝑁) − 1) = (⌊‘(2 logb 𝑁)))
2726oveq2d 7156 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) = (2↑(⌊‘(2 logb 𝑁))))
2827oveq2d 7156 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 / (2↑((#b𝑁) − 1))) = (𝑁 / (2↑(⌊‘(2 logb 𝑁)))))
2928fveq2d 6656 . . . . . 6 (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) = (⌊‘(𝑁 / (2↑(⌊‘(2 logb 𝑁))))))
30 fldivexpfllog2 44918 . . . . . . 7 (𝑁 ∈ ℝ+ → (⌊‘(𝑁 / (2↑(⌊‘(2 logb 𝑁))))) = 1)
3119, 30syl 17 . . . . . 6 (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑(⌊‘(2 logb 𝑁))))) = 1)
3229, 31eqtrd 2857 . . . . 5 (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) = 1)
3332breq2d 5054 . . . 4 (𝑁 ∈ ℕ → (2 ∥ (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) ↔ 2 ∥ 1))
3413, 33mtbiri 330 . . 3 (𝑁 ∈ ℕ → ¬ 2 ∥ (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))))
35 2re 11699 . . . . . . . 8 2 ∈ ℝ
3635a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ)
3736, 5reexpcld 13523 . . . . . 6 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) ∈ ℝ)
38 2cnd 11703 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℂ)
39 2ne0 11729 . . . . . . . 8 2 ≠ 0
4039a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ≠ 0)
415nn0zd 12073 . . . . . . 7 (𝑁 ∈ ℕ → ((#b𝑁) − 1) ∈ ℤ)
4238, 40, 41expne0d 13512 . . . . . 6 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) ≠ 0)
436, 37, 42redivcld 11457 . . . . 5 (𝑁 ∈ ℕ → (𝑁 / (2↑((#b𝑁) − 1))) ∈ ℝ)
4443flcld 13163 . . . 4 (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) ∈ ℤ)
45 mod2eq1n2dvds 15687 . . . 4 ((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) ∈ ℤ → (((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑((#b𝑁) − 1))))))
4644, 45syl 17 . . 3 (𝑁 ∈ ℕ → (((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑((#b𝑁) − 1))))))
4734, 46mpbird 260 . 2 (𝑁 ∈ ℕ → ((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2) = 1)
4812, 47eqtrd 2857 1 (𝑁 ∈ ℕ → (((#b𝑁) − 1)(digit‘2)𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209   = wceq 1538  wcel 2114  wne 3011   class class class wbr 5042  cfv 6334  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  [,)cico 12728  cfl 13155   mod cmo 13232  cexp 13425  cdvds 15598   logb clogb 25348  #bcblen 44922  digitcdig 44948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412  df-sin 15414  df-cos 15415  df-pi 15417  df-dvds 15599  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-hom 16580  df-cco 16581  df-rest 16687  df-topn 16688  df-0g 16706  df-gsum 16707  df-topgen 16708  df-pt 16709  df-prds 16712  df-xrs 16766  df-qtop 16771  df-imas 16772  df-xps 16774  df-mre 16848  df-mrc 16849  df-acs 16851  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-mulg 18216  df-cntz 18438  df-cmn 18899  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-fbas 20086  df-fg 20087  df-cnfld 20090  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-xms 22925  df-ms 22926  df-tms 22927  df-cncf 23481  df-limc 24467  df-dv 24468  df-log 25146  df-cxp 25147  df-logb 25349  df-blen 44923  df-dig 44949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator