Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dig2nn1st Structured version   Visualization version   GIF version

Theorem dig2nn1st 48526
Description: The first (relevant) digit of a positive integer in a binary system is 1. (Contributed by AV, 26-May-2020.)
Assertion
Ref Expression
dig2nn1st (𝑁 ∈ ℕ → (((#b𝑁) − 1)(digit‘2)𝑁) = 1)

Proof of Theorem dig2nn1st
StepHypRef Expression
1 2nn 12339 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 (𝑁 ∈ ℕ → 2 ∈ ℕ)
3 blennnelnn 48497 . . . 4 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ)
4 nnm1nn0 12567 . . . 4 ((#b𝑁) ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
53, 4syl 17 . . 3 (𝑁 ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
6 nnre 12273 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7 nnnn0 12533 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
87nn0ge0d 12590 . . . 4 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
9 elrege0 13494 . . . 4 (𝑁 ∈ (0[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 0 ≤ 𝑁))
106, 8, 9sylanbrc 583 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ (0[,)+∞))
11 nn0digval 48521 . . 3 ((2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0𝑁 ∈ (0[,)+∞)) → (((#b𝑁) − 1)(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2))
122, 5, 10, 11syl3anc 1373 . 2 (𝑁 ∈ ℕ → (((#b𝑁) − 1)(digit‘2)𝑁) = ((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2))
13 n2dvds1 16405 . . . 4 ¬ 2 ∥ 1
14 blennn 48496 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
1514oveq1d 7446 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((#b𝑁) − 1) = (((⌊‘(2 logb 𝑁)) + 1) − 1))
16 2z 12649 . . . . . . . . . . . . . . 15 2 ∈ ℤ
17 uzid 12893 . . . . . . . . . . . . . . 15 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
1816, 17ax-mp 5 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘2)
19 nnrp 13046 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
20 relogbzcl 26817 . . . . . . . . . . . . . 14 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (2 logb 𝑁) ∈ ℝ)
2118, 19, 20sylancr 587 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ)
2221flcld 13838 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ)
2322zcnd 12723 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ)
24 pncan1 11687 . . . . . . . . . . 11 ((⌊‘(2 logb 𝑁)) ∈ ℂ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁)))
2523, 24syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) − 1) = (⌊‘(2 logb 𝑁)))
2615, 25eqtrd 2777 . . . . . . . . 9 (𝑁 ∈ ℕ → ((#b𝑁) − 1) = (⌊‘(2 logb 𝑁)))
2726oveq2d 7447 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) = (2↑(⌊‘(2 logb 𝑁))))
2827oveq2d 7447 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 / (2↑((#b𝑁) − 1))) = (𝑁 / (2↑(⌊‘(2 logb 𝑁)))))
2928fveq2d 6910 . . . . . 6 (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) = (⌊‘(𝑁 / (2↑(⌊‘(2 logb 𝑁))))))
30 fldivexpfllog2 48486 . . . . . . 7 (𝑁 ∈ ℝ+ → (⌊‘(𝑁 / (2↑(⌊‘(2 logb 𝑁))))) = 1)
3119, 30syl 17 . . . . . 6 (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑(⌊‘(2 logb 𝑁))))) = 1)
3229, 31eqtrd 2777 . . . . 5 (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) = 1)
3332breq2d 5155 . . . 4 (𝑁 ∈ ℕ → (2 ∥ (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) ↔ 2 ∥ 1))
3413, 33mtbiri 327 . . 3 (𝑁 ∈ ℕ → ¬ 2 ∥ (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))))
35 2re 12340 . . . . . . . 8 2 ∈ ℝ
3635a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ)
3736, 5reexpcld 14203 . . . . . 6 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) ∈ ℝ)
38 2cnd 12344 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℂ)
39 2ne0 12370 . . . . . . . 8 2 ≠ 0
4039a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ≠ 0)
415nn0zd 12639 . . . . . . 7 (𝑁 ∈ ℕ → ((#b𝑁) − 1) ∈ ℤ)
4238, 40, 41expne0d 14192 . . . . . 6 (𝑁 ∈ ℕ → (2↑((#b𝑁) − 1)) ≠ 0)
436, 37, 42redivcld 12095 . . . . 5 (𝑁 ∈ ℕ → (𝑁 / (2↑((#b𝑁) − 1))) ∈ ℝ)
4443flcld 13838 . . . 4 (𝑁 ∈ ℕ → (⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) ∈ ℤ)
45 mod2eq1n2dvds 16384 . . . 4 ((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) ∈ ℤ → (((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑((#b𝑁) − 1))))))
4644, 45syl 17 . . 3 (𝑁 ∈ ℕ → (((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2) = 1 ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑((#b𝑁) − 1))))))
4734, 46mpbird 257 . 2 (𝑁 ∈ ℕ → ((⌊‘(𝑁 / (2↑((#b𝑁) − 1)))) mod 2) = 1)
4812, 47eqtrd 2777 1 (𝑁 ∈ ℕ → (((#b𝑁) − 1)(digit‘2)𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158  +∞cpnf 11292  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  [,)cico 13389  cfl 13830   mod cmo 13909  cexp 14102  cdvds 16290   logb clogb 26807  #bcblen 48490  digitcdig 48516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-logb 26808  df-blen 48491  df-dig 48517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator