Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > blenpw2m1 | Structured version Visualization version GIF version |
Description: The binary length of a power of 2 minus 1 is the exponent. (Contributed by AV, 31-May-2020.) |
Ref | Expression |
---|---|
blenpw2m1 | ⊢ (𝐼 ∈ ℕ → (#b‘((2↑𝐼) − 1)) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12320 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℕ0) |
3 | nnnn0 12310 | . . . . 5 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0) | |
4 | 2, 3 | nn0expcld 14031 | . . . 4 ⊢ (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0) |
5 | nnge1 12071 | . . . . 5 ⊢ (𝐼 ∈ ℕ → 1 ≤ 𝐼) | |
6 | 2cnd 12121 | . . . . . . . . 9 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℂ) | |
7 | 6 | exp1d 13929 | . . . . . . . 8 ⊢ (𝐼 ∈ ℕ → (2↑1) = 2) |
8 | 7 | eqcomd 2743 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 2 = (2↑1)) |
9 | 8 | breq1d 5095 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (2 ≤ (2↑𝐼) ↔ (2↑1) ≤ (2↑𝐼))) |
10 | 2re 12117 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 2 ∈ ℝ) |
12 | 1zzd 12421 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 ∈ ℤ) | |
13 | nnz 12412 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℤ) | |
14 | 1lt2 12214 | . . . . . . . 8 ⊢ 1 < 2 | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝐼 ∈ ℕ → 1 < 2) |
16 | 11, 12, 13, 15 | leexp2d 14039 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ (2↑1) ≤ (2↑𝐼))) |
17 | 9, 16 | bitr4d 281 | . . . . 5 ⊢ (𝐼 ∈ ℕ → (2 ≤ (2↑𝐼) ↔ 1 ≤ 𝐼)) |
18 | 5, 17 | mpbird 256 | . . . 4 ⊢ (𝐼 ∈ ℕ → 2 ≤ (2↑𝐼)) |
19 | nn0ge2m1nn 12372 | . . . 4 ⊢ (((2↑𝐼) ∈ ℕ0 ∧ 2 ≤ (2↑𝐼)) → ((2↑𝐼) − 1) ∈ ℕ) | |
20 | 4, 18, 19 | syl2anc 584 | . . 3 ⊢ (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ) |
21 | blennn 46180 | . . 3 ⊢ (((2↑𝐼) − 1) ∈ ℕ → (#b‘((2↑𝐼) − 1)) = ((⌊‘(2 logb ((2↑𝐼) − 1))) + 1)) | |
22 | 20, 21 | syl 17 | . 2 ⊢ (𝐼 ∈ ℕ → (#b‘((2↑𝐼) − 1)) = ((⌊‘(2 logb ((2↑𝐼) − 1))) + 1)) |
23 | logbpw2m1 46172 | . . 3 ⊢ (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)) | |
24 | 23 | oveq1d 7328 | . 2 ⊢ (𝐼 ∈ ℕ → ((⌊‘(2 logb ((2↑𝐼) − 1))) + 1) = ((𝐼 − 1) + 1)) |
25 | nncn 12051 | . . 3 ⊢ (𝐼 ∈ ℕ → 𝐼 ∈ ℂ) | |
26 | npcan1 11470 | . . 3 ⊢ (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼) | |
27 | 25, 26 | syl 17 | . 2 ⊢ (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) = 𝐼) |
28 | 22, 24, 27 | 3eqtrd 2781 | 1 ⊢ (𝐼 ∈ ℕ → (#b‘((2↑𝐼) − 1)) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 class class class wbr 5085 ‘cfv 6463 (class class class)co 7313 ℂcc 10939 ℝcr 10940 1c1 10942 + caddc 10944 < clt 11079 ≤ cle 11080 − cmin 11275 ℕcn 12043 2c2 12098 ℕ0cn0 12303 ⌊cfl 13580 ↑cexp 13852 logb clogb 25985 #bcblen 46174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 ax-addf 11020 ax-mulf 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-om 7756 df-1st 7874 df-2nd 7875 df-supp 8023 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-2o 8343 df-er 8544 df-map 8663 df-pm 8664 df-ixp 8732 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fsupp 9197 df-fi 9238 df-sup 9269 df-inf 9270 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-q 12759 df-rp 12801 df-xneg 12918 df-xadd 12919 df-xmul 12920 df-ioo 13153 df-ioc 13154 df-ico 13155 df-icc 13156 df-fz 13310 df-fzo 13453 df-fl 13582 df-mod 13660 df-seq 13792 df-exp 13853 df-fac 14058 df-bc 14087 df-hash 14115 df-shft 14847 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-limsup 15249 df-clim 15266 df-rlim 15267 df-sum 15467 df-ef 15846 df-sin 15848 df-cos 15849 df-pi 15851 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-starv 17044 df-sca 17045 df-vsca 17046 df-ip 17047 df-tset 17048 df-ple 17049 df-ds 17051 df-unif 17052 df-hom 17053 df-cco 17054 df-rest 17200 df-topn 17201 df-0g 17219 df-gsum 17220 df-topgen 17221 df-pt 17222 df-prds 17225 df-xrs 17280 df-qtop 17285 df-imas 17286 df-xps 17288 df-mre 17362 df-mrc 17363 df-acs 17365 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-submnd 18498 df-mulg 18768 df-cntz 18990 df-cmn 19455 df-psmet 20660 df-xmet 20661 df-met 20662 df-bl 20663 df-mopn 20664 df-fbas 20665 df-fg 20666 df-cnfld 20669 df-top 22114 df-topon 22131 df-topsp 22153 df-bases 22167 df-cld 22241 df-ntr 22242 df-cls 22243 df-nei 22320 df-lp 22358 df-perf 22359 df-cn 22449 df-cnp 22450 df-haus 22537 df-tx 22784 df-hmeo 22977 df-fil 23068 df-fm 23160 df-flim 23161 df-flf 23162 df-xms 23544 df-ms 23545 df-tms 23546 df-cncf 24112 df-limc 25101 df-dv 25102 df-log 25783 df-cxp 25784 df-logb 25986 df-blen 46175 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |