MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1pfxeq Structured version   Visualization version   GIF version

Theorem ccats1pfxeq 13800
Description: The last symbol of a word concatenated with the word with the last symbol removed results in the word itself. (Contributed by Alexander van der Vekens, 24-Oct-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
ccats1pfxeq ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))

Proof of Theorem ccats1pfxeq
StepHypRef Expression
1 oveq1 6911 . . . 4 (𝑊 = (𝑈 prefix (♯‘𝑊)) → (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) = ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩))
21adantl 475 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) ∧ 𝑊 = (𝑈 prefix (♯‘𝑊))) → (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) = ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩))
3 lencl 13592 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
43nn0cnd 11679 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
5 pncan1 10777 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℂ → (((♯‘𝑊) + 1) − 1) = (♯‘𝑊))
64, 5syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) + 1) − 1) = (♯‘𝑊))
76eqcomd 2830 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) + 1) − 1))
873ad2ant1 1169 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (♯‘𝑊) = (((♯‘𝑊) + 1) − 1))
9 oveq1 6911 . . . . . . . . . 10 ((♯‘𝑈) = ((♯‘𝑊) + 1) → ((♯‘𝑈) − 1) = (((♯‘𝑊) + 1) − 1))
109eqcomd 2830 . . . . . . . . 9 ((♯‘𝑈) = ((♯‘𝑊) + 1) → (((♯‘𝑊) + 1) − 1) = ((♯‘𝑈) − 1))
11103ad2ant3 1171 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (((♯‘𝑊) + 1) − 1) = ((♯‘𝑈) − 1))
128, 11eqtrd 2860 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (♯‘𝑊) = ((♯‘𝑈) − 1))
1312oveq2d 6920 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑈 prefix (♯‘𝑊)) = (𝑈 prefix ((♯‘𝑈) − 1)))
1413oveq1d 6919 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩) = ((𝑈 prefix ((♯‘𝑈) − 1)) ++ ⟨“(lastS‘𝑈)”⟩))
15 simp2 1173 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉)
16 nn0p1gt0 11648 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → 0 < ((♯‘𝑊) + 1))
173, 16syl 17 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → 0 < ((♯‘𝑊) + 1))
18173ad2ant1 1169 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 0 < ((♯‘𝑊) + 1))
19 breq2 4876 . . . . . . . . 9 ((♯‘𝑈) = ((♯‘𝑊) + 1) → (0 < (♯‘𝑈) ↔ 0 < ((♯‘𝑊) + 1)))
20193ad2ant3 1171 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (0 < (♯‘𝑈) ↔ 0 < ((♯‘𝑊) + 1)))
2118, 20mpbird 249 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 0 < (♯‘𝑈))
22 hashneq0 13444 . . . . . . . 8 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) ↔ 𝑈 ≠ ∅))
23223ad2ant2 1170 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (0 < (♯‘𝑈) ↔ 𝑈 ≠ ∅))
2421, 23mpbid 224 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ≠ ∅)
25 pfxlswccat 13798 . . . . . 6 ((𝑈 ∈ Word 𝑉𝑈 ≠ ∅) → ((𝑈 prefix ((♯‘𝑈) − 1)) ++ ⟨“(lastS‘𝑈)”⟩) = 𝑈)
2615, 24, 25syl2anc 581 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ((𝑈 prefix ((♯‘𝑈) − 1)) ++ ⟨“(lastS‘𝑈)”⟩) = 𝑈)
2714, 26eqtrd 2860 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩) = 𝑈)
2827adantr 474 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) ∧ 𝑊 = (𝑈 prefix (♯‘𝑊))) → ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩) = 𝑈)
292, 28eqtr2d 2861 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) ∧ 𝑊 = (𝑈 prefix (♯‘𝑊))) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩))
3029ex 403 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2998  c0 4143   class class class wbr 4872  cfv 6122  (class class class)co 6904  cc 10249  0cc0 10251  1c1 10252   + caddc 10254   < clt 10390  cmin 10584  0cn0 11617  chash 13409  Word cword 13573  lastSclsw 13621   ++ cconcat 13629  ⟨“cs1 13654   prefix cpfx 13748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-card 9077  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-n0 11618  df-xnn0 11690  df-z 11704  df-uz 11968  df-fz 12619  df-fzo 12760  df-hash 13410  df-word 13574  df-lsw 13622  df-concat 13630  df-s1 13655  df-substr 13700  df-pfx 13749
This theorem is referenced by:  ccats1pfxeqrex  13802  ccats1pfxeqbi  13845
  Copyright terms: Public domain W3C validator