MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1pfxeq Structured version   Visualization version   GIF version

Theorem ccats1pfxeq 14602
Description: The last symbol of a word concatenated with the word with the last symbol removed results in the word itself. (Contributed by Alexander van der Vekens, 24-Oct-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
ccats1pfxeq ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))

Proof of Theorem ccats1pfxeq
StepHypRef Expression
1 oveq1 7364 . . . 4 (𝑊 = (𝑈 prefix (♯‘𝑊)) → (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) = ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩))
21adantl 482 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) ∧ 𝑊 = (𝑈 prefix (♯‘𝑊))) → (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) = ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩))
3 lencl 14421 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
43nn0cnd 12475 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
5 pncan1 11579 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℂ → (((♯‘𝑊) + 1) − 1) = (♯‘𝑊))
64, 5syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) + 1) − 1) = (♯‘𝑊))
76eqcomd 2742 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = (((♯‘𝑊) + 1) − 1))
873ad2ant1 1133 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (♯‘𝑊) = (((♯‘𝑊) + 1) − 1))
9 oveq1 7364 . . . . . . . . . 10 ((♯‘𝑈) = ((♯‘𝑊) + 1) → ((♯‘𝑈) − 1) = (((♯‘𝑊) + 1) − 1))
109eqcomd 2742 . . . . . . . . 9 ((♯‘𝑈) = ((♯‘𝑊) + 1) → (((♯‘𝑊) + 1) − 1) = ((♯‘𝑈) − 1))
11103ad2ant3 1135 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (((♯‘𝑊) + 1) − 1) = ((♯‘𝑈) − 1))
128, 11eqtrd 2776 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (♯‘𝑊) = ((♯‘𝑈) − 1))
1312oveq2d 7373 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑈 prefix (♯‘𝑊)) = (𝑈 prefix ((♯‘𝑈) − 1)))
1413oveq1d 7372 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩) = ((𝑈 prefix ((♯‘𝑈) − 1)) ++ ⟨“(lastS‘𝑈)”⟩))
15 simp2 1137 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉)
16 nn0p1gt0 12442 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 → 0 < ((♯‘𝑊) + 1))
173, 16syl 17 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → 0 < ((♯‘𝑊) + 1))
18173ad2ant1 1133 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 0 < ((♯‘𝑊) + 1))
19 breq2 5109 . . . . . . . . 9 ((♯‘𝑈) = ((♯‘𝑊) + 1) → (0 < (♯‘𝑈) ↔ 0 < ((♯‘𝑊) + 1)))
20193ad2ant3 1135 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (0 < (♯‘𝑈) ↔ 0 < ((♯‘𝑊) + 1)))
2118, 20mpbird 256 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 0 < (♯‘𝑈))
22 hashneq0 14264 . . . . . . . 8 (𝑈 ∈ Word 𝑉 → (0 < (♯‘𝑈) ↔ 𝑈 ≠ ∅))
23223ad2ant2 1134 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (0 < (♯‘𝑈) ↔ 𝑈 ≠ ∅))
2421, 23mpbid 231 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑈 ≠ ∅)
25 pfxlswccat 14601 . . . . . 6 ((𝑈 ∈ Word 𝑉𝑈 ≠ ∅) → ((𝑈 prefix ((♯‘𝑈) − 1)) ++ ⟨“(lastS‘𝑈)”⟩) = 𝑈)
2615, 24, 25syl2anc 584 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ((𝑈 prefix ((♯‘𝑈) − 1)) ++ ⟨“(lastS‘𝑈)”⟩) = 𝑈)
2714, 26eqtrd 2776 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩) = 𝑈)
2827adantr 481 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) ∧ 𝑊 = (𝑈 prefix (♯‘𝑊))) → ((𝑈 prefix (♯‘𝑊)) ++ ⟨“(lastS‘𝑈)”⟩) = 𝑈)
292, 28eqtr2d 2777 . 2 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) ∧ 𝑊 = (𝑈 prefix (♯‘𝑊))) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩))
3029ex 413 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  c0 4282   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cmin 11385  0cn0 12413  chash 14230  Word cword 14402  lastSclsw 14450   ++ cconcat 14458  ⟨“cs1 14483   prefix cpfx 14558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-lsw 14451  df-concat 14459  df-s1 14484  df-substr 14529  df-pfx 14559
This theorem is referenced by:  ccats1pfxeqrex  14603  ccats1pfxeqbi  14630
  Copyright terms: Public domain W3C validator