| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones13 | Structured version Visualization version GIF version | ||
| Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
| Ref | Expression |
|---|---|
| sticksstones13.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones13.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| sticksstones13.3 | ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
| sticksstones13.4 | ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) |
| sticksstones13.5 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
| sticksstones13.6 | ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| Ref | Expression |
|---|---|
| sticksstones13 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones13.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾 = 0) → 𝑁 ∈ ℕ0) |
| 3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐾 = 0) → 𝐾 = 0) | |
| 4 | sticksstones13.3 | . . 3 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) | |
| 5 | sticksstones13.4 | . . 3 ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) | |
| 6 | sticksstones13.5 | . . 3 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} | |
| 7 | sticksstones13.6 | . . 3 ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
| 8 | 2, 3, 4, 5, 6, 7 | sticksstones11 42168 | . 2 ⊢ ((𝜑 ∧ 𝐾 = 0) → 𝐹:𝐴–1-1-onto→𝐵) |
| 9 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℕ) | |
| 11 | 9, 10, 4, 5, 6, 7 | sticksstones12 42170 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝐹:𝐴–1-1-onto→𝐵) |
| 12 | sticksstones13.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 13 | elnn0 12375 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0)) | |
| 14 | 13 | biimpi 216 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝐾 ∈ ℕ ∨ 𝐾 = 0)) |
| 15 | 14 | orcomd 871 | . . 3 ⊢ (𝐾 ∈ ℕ0 → (𝐾 = 0 ∨ 𝐾 ∈ ℕ)) |
| 16 | 12, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐾 = 0 ∨ 𝐾 ∈ ℕ)) |
| 17 | 8, 11, 16 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 {cab 2708 ∀wral 3045 ifcif 4473 {csn 4574 〈cop 4580 class class class wbr 5089 ↦ cmpt 5170 ⟶wf 6473 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 + caddc 11001 < clt 11138 − cmin 11336 ℕcn 12117 ℕ0cn0 12373 ...cfz 13399 Σcsu 15585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-ico 13243 df-fz 13400 df-fzo 13547 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-sum 15586 |
| This theorem is referenced by: sticksstones14 42172 |
| Copyright terms: Public domain | W3C validator |