Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones13 Structured version   Visualization version   GIF version

Theorem sticksstones13 42160
Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.)
Hypotheses
Ref Expression
sticksstones13.1 (𝜑𝑁 ∈ ℕ0)
sticksstones13.2 (𝜑𝐾 ∈ ℕ0)
sticksstones13.3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
sticksstones13.4 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
sticksstones13.5 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
sticksstones13.6 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
Assertion
Ref Expression
sticksstones13 (𝜑𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑙,𝑥,𝑦   𝐴,𝑏,𝑗,𝑙   𝐵,𝑎   𝐵,𝑏   𝐾,𝑎,𝑓,𝑗,𝑙,𝑥,𝑦   𝐾,𝑏,𝑔,𝑖   𝑔,𝑎,𝑖   𝑁,𝑏,𝑗,𝑓   𝑔,𝑁,𝑖   𝜑,𝑎,𝑗,𝑙,𝑥,𝑦   𝜑,𝑏   𝑖,𝑙   𝐴,𝑘,𝑎,𝑗,𝑙,𝑥,𝑦   𝑘,𝑏,𝑥,𝑦   𝐵,𝑖,𝑘,𝑙,𝑏   𝐵,𝑗   𝐹,𝑏,𝑘   𝑓,𝑏   𝑘,𝐾,𝑔   𝑁,𝑎,𝑙,𝑘   𝜑,𝑖,𝑘   𝑔,𝑏
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐴(𝑓,𝑔,𝑖)   𝐵(𝑥,𝑦,𝑓,𝑔)   𝐹(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑎,𝑙)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑖,𝑗,𝑘,𝑎,𝑏,𝑙)   𝑁(𝑥,𝑦)

Proof of Theorem sticksstones13
StepHypRef Expression
1 sticksstones13.1 . . . 4 (𝜑𝑁 ∈ ℕ0)
21adantr 480 . . 3 ((𝜑𝐾 = 0) → 𝑁 ∈ ℕ0)
3 simpr 484 . . 3 ((𝜑𝐾 = 0) → 𝐾 = 0)
4 sticksstones13.3 . . 3 𝐹 = (𝑎𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎𝑙))))
5 sticksstones13.4 . . 3 𝐺 = (𝑏𝐵 ↦ if(𝐾 = 0, {⟨1, 𝑁⟩}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏𝑘) − (𝑏‘(𝑘 − 1))) − 1))))))
6 sticksstones13.5 . . 3 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔𝑖) = 𝑁)}
7 sticksstones13.6 . . 3 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓𝑥) < (𝑓𝑦)))}
82, 3, 4, 5, 6, 7sticksstones11 42157 . 2 ((𝜑𝐾 = 0) → 𝐹:𝐴1-1-onto𝐵)
91adantr 480 . . 3 ((𝜑𝐾 ∈ ℕ) → 𝑁 ∈ ℕ0)
10 simpr 484 . . 3 ((𝜑𝐾 ∈ ℕ) → 𝐾 ∈ ℕ)
119, 10, 4, 5, 6, 7sticksstones12 42159 . 2 ((𝜑𝐾 ∈ ℕ) → 𝐹:𝐴1-1-onto𝐵)
12 sticksstones13.2 . . 3 (𝜑𝐾 ∈ ℕ0)
13 elnn0 12528 . . . . 5 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
1413biimpi 216 . . . 4 (𝐾 ∈ ℕ0 → (𝐾 ∈ ℕ ∨ 𝐾 = 0))
1514orcomd 872 . . 3 (𝐾 ∈ ℕ0 → (𝐾 = 0 ∨ 𝐾 ∈ ℕ))
1612, 15syl 17 . 2 (𝜑 → (𝐾 = 0 ∨ 𝐾 ∈ ℕ))
178, 11, 16mpjaodan 961 1 (𝜑𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  {cab 2714  wral 3061  ifcif 4525  {csn 4626  cop 4632   class class class wbr 5143  cmpt 5225  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492  cn 12266  0cn0 12526  ...cfz 13547  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  sticksstones14  42161
  Copyright terms: Public domain W3C validator