![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones13 | Structured version Visualization version GIF version |
Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
Ref | Expression |
---|---|
sticksstones13.1 | β’ (π β π β β0) |
sticksstones13.2 | β’ (π β πΎ β β0) |
sticksstones13.3 | β’ πΉ = (π β π΄ β¦ (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) |
sticksstones13.4 | β’ πΊ = (π β π΅ β¦ if(πΎ = 0, {β¨1, πβ©}, (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1)))))) |
sticksstones13.5 | β’ π΄ = {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} |
sticksstones13.6 | β’ π΅ = {π β£ (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))} |
Ref | Expression |
---|---|
sticksstones13 | β’ (π β πΉ:π΄β1-1-ontoβπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sticksstones13.1 | . . . 4 β’ (π β π β β0) | |
2 | 1 | adantr 479 | . . 3 β’ ((π β§ πΎ = 0) β π β β0) |
3 | simpr 483 | . . 3 β’ ((π β§ πΎ = 0) β πΎ = 0) | |
4 | sticksstones13.3 | . . 3 β’ πΉ = (π β π΄ β¦ (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) | |
5 | sticksstones13.4 | . . 3 β’ πΊ = (π β π΅ β¦ if(πΎ = 0, {β¨1, πβ©}, (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1)))))) | |
6 | sticksstones13.5 | . . 3 β’ π΄ = {π β£ (π:(1...(πΎ + 1))βΆβ0 β§ Ξ£π β (1...(πΎ + 1))(πβπ) = π)} | |
7 | sticksstones13.6 | . . 3 β’ π΅ = {π β£ (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))} | |
8 | 2, 3, 4, 5, 6, 7 | sticksstones11 41697 | . 2 β’ ((π β§ πΎ = 0) β πΉ:π΄β1-1-ontoβπ΅) |
9 | 1 | adantr 479 | . . 3 β’ ((π β§ πΎ β β) β π β β0) |
10 | simpr 483 | . . 3 β’ ((π β§ πΎ β β) β πΎ β β) | |
11 | 9, 10, 4, 5, 6, 7 | sticksstones12 41699 | . 2 β’ ((π β§ πΎ β β) β πΉ:π΄β1-1-ontoβπ΅) |
12 | sticksstones13.2 | . . 3 β’ (π β πΎ β β0) | |
13 | elnn0 12504 | . . . . 5 β’ (πΎ β β0 β (πΎ β β β¨ πΎ = 0)) | |
14 | 13 | biimpi 215 | . . . 4 β’ (πΎ β β0 β (πΎ β β β¨ πΎ = 0)) |
15 | 14 | orcomd 869 | . . 3 β’ (πΎ β β0 β (πΎ = 0 β¨ πΎ β β)) |
16 | 12, 15 | syl 17 | . 2 β’ (π β (πΎ = 0 β¨ πΎ β β)) |
17 | 8, 11, 16 | mpjaodan 956 | 1 β’ (π β πΉ:π΄β1-1-ontoβπ΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β¨ wo 845 = wceq 1533 β wcel 2098 {cab 2702 βwral 3051 ifcif 4529 {csn 4629 β¨cop 4635 class class class wbr 5148 β¦ cmpt 5231 βΆwf 6543 β1-1-ontoβwf1o 6546 βcfv 6547 (class class class)co 7417 0cc0 11138 1c1 11139 + caddc 11141 < clt 11278 β cmin 11474 βcn 12242 β0cn0 12502 ...cfz 13516 Ξ£csu 15664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-ico 13362 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-sum 15665 |
This theorem is referenced by: sticksstones14 41701 |
Copyright terms: Public domain | W3C validator |