| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones13 | Structured version Visualization version GIF version | ||
| Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
| Ref | Expression |
|---|---|
| sticksstones13.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones13.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| sticksstones13.3 | ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
| sticksstones13.4 | ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) |
| sticksstones13.5 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
| sticksstones13.6 | ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| Ref | Expression |
|---|---|
| sticksstones13 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones13.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾 = 0) → 𝑁 ∈ ℕ0) |
| 3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐾 = 0) → 𝐾 = 0) | |
| 4 | sticksstones13.3 | . . 3 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) | |
| 5 | sticksstones13.4 | . . 3 ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) | |
| 6 | sticksstones13.5 | . . 3 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} | |
| 7 | sticksstones13.6 | . . 3 ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
| 8 | 2, 3, 4, 5, 6, 7 | sticksstones11 42174 | . 2 ⊢ ((𝜑 ∧ 𝐾 = 0) → 𝐹:𝐴–1-1-onto→𝐵) |
| 9 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℕ) | |
| 11 | 9, 10, 4, 5, 6, 7 | sticksstones12 42176 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝐹:𝐴–1-1-onto→𝐵) |
| 12 | sticksstones13.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 13 | elnn0 12508 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0)) | |
| 14 | 13 | biimpi 216 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝐾 ∈ ℕ ∨ 𝐾 = 0)) |
| 15 | 14 | orcomd 871 | . . 3 ⊢ (𝐾 ∈ ℕ0 → (𝐾 = 0 ∨ 𝐾 ∈ ℕ)) |
| 16 | 12, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐾 = 0 ∨ 𝐾 ∈ ℕ)) |
| 17 | 8, 11, 16 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 ifcif 4505 {csn 4606 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 − cmin 11471 ℕcn 12245 ℕ0cn0 12506 ...cfz 13529 Σcsu 15707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 |
| This theorem is referenced by: sticksstones14 42178 |
| Copyright terms: Public domain | W3C validator |