| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones13 | Structured version Visualization version GIF version | ||
| Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024.) |
| Ref | Expression |
|---|---|
| sticksstones13.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones13.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| sticksstones13.3 | ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
| sticksstones13.4 | ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) |
| sticksstones13.5 | ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
| sticksstones13.6 | ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| Ref | Expression |
|---|---|
| sticksstones13 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones13.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾 = 0) → 𝑁 ∈ ℕ0) |
| 3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐾 = 0) → 𝐾 = 0) | |
| 4 | sticksstones13.3 | . . 3 ⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) | |
| 5 | sticksstones13.4 | . . 3 ⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) | |
| 6 | sticksstones13.5 | . . 3 ⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} | |
| 7 | sticksstones13.6 | . . 3 ⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} | |
| 8 | 2, 3, 4, 5, 6, 7 | sticksstones11 42144 | . 2 ⊢ ((𝜑 ∧ 𝐾 = 0) → 𝐹:𝐴–1-1-onto→𝐵) |
| 9 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝑁 ∈ ℕ0) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℕ) | |
| 11 | 9, 10, 4, 5, 6, 7 | sticksstones12 42146 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝐹:𝐴–1-1-onto→𝐵) |
| 12 | sticksstones13.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 13 | elnn0 12444 | . . . . 5 ⊢ (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0)) | |
| 14 | 13 | biimpi 216 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝐾 ∈ ℕ ∨ 𝐾 = 0)) |
| 15 | 14 | orcomd 871 | . . 3 ⊢ (𝐾 ∈ ℕ0 → (𝐾 = 0 ∨ 𝐾 ∈ ℕ)) |
| 16 | 12, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝐾 = 0 ∨ 𝐾 ∈ ℕ)) |
| 17 | 8, 11, 16 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ifcif 4488 {csn 4589 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 − cmin 11405 ℕcn 12186 ℕ0cn0 12442 ...cfz 13468 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 |
| This theorem is referenced by: sticksstones14 42148 |
| Copyright terms: Public domain | W3C validator |