Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochkrshp4 Structured version   Visualization version   GIF version

Theorem dochkrshp4 40992
Description: Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.)
Hypotheses
Ref Expression
dochkrshp3.h 𝐻 = (LHyp‘𝐾)
dochkrshp3.o = ((ocH‘𝐾)‘𝑊)
dochkrshp3.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochkrshp3.v 𝑉 = (Base‘𝑈)
dochkrshp3.f 𝐹 = (LFnl‘𝑈)
dochkrshp3.l 𝐿 = (LKer‘𝑈)
dochkrshp3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dochkrshp3.g (𝜑𝐺𝐹)
Assertion
Ref Expression
dochkrshp4 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉)))

Proof of Theorem dochkrshp4
StepHypRef Expression
1 df-ne 2930 . . . . . 6 ((𝐿𝐺) ≠ 𝑉 ↔ ¬ (𝐿𝐺) = 𝑉)
2 dochkrshp3.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 dochkrshp3.o . . . . . . . . 9 = ((ocH‘𝐾)‘𝑊)
4 dochkrshp3.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dochkrshp3.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
6 dochkrshp3.f . . . . . . . . 9 𝐹 = (LFnl‘𝑈)
7 dochkrshp3.l . . . . . . . . 9 𝐿 = (LKer‘𝑈)
8 dochkrshp3.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 dochkrshp3.g . . . . . . . . 9 (𝜑𝐺𝐹)
102, 3, 4, 5, 6, 7, 8, 9dochkrshp3 40991 . . . . . . . 8 (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ (𝐿𝐺) ≠ 𝑉)))
1110biimprd 247 . . . . . . 7 (𝜑 → ((( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ (𝐿𝐺) ≠ 𝑉) → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
1211expdimp 451 . . . . . 6 ((𝜑 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) → ((𝐿𝐺) ≠ 𝑉 → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
131, 12biimtrrid 242 . . . . 5 ((𝜑 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) → (¬ (𝐿𝐺) = 𝑉 → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
1413orrd 861 . . . 4 ((𝜑 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) → ((𝐿𝐺) = 𝑉 ∨ ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
1514orcomd 869 . . 3 ((𝜑 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉))
1615ex 411 . 2 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉)))
17 simpl 481 . . . 4 ((( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ (𝐿𝐺) ≠ 𝑉) → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))
1810, 17biimtrdi 252 . . 3 (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
192, 4, 3, 5, 8dochoc1 40964 . . . 4 (𝜑 → ( ‘( 𝑉)) = 𝑉)
20 2fveq3 6901 . . . . 5 ((𝐿𝐺) = 𝑉 → ( ‘( ‘(𝐿𝐺))) = ( ‘( 𝑉)))
21 id 22 . . . . 5 ((𝐿𝐺) = 𝑉 → (𝐿𝐺) = 𝑉)
2220, 21eqeq12d 2741 . . . 4 ((𝐿𝐺) = 𝑉 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ ( ‘( 𝑉)) = 𝑉))
2319, 22syl5ibrcom 246 . . 3 (𝜑 → ((𝐿𝐺) = 𝑉 → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
2418, 23jaod 857 . 2 (𝜑 → ((( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉) → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
2516, 24impbid 211 1 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  cfv 6549  Basecbs 17183  LFnlclfn 38659  LKerclk 38687  HLchlt 38952  LHypclh 39587  DVecHcdvh 40681  ocHcoch 40950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-riotaBAD 38555
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-undef 8279  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-0g 17426  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-lsatoms 38578  df-lshyp 38579  df-lfl 38660  df-lkr 38688  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953  df-llines 39101  df-lplanes 39102  df-lvols 39103  df-lines 39104  df-psubsp 39106  df-pmap 39107  df-padd 39399  df-lhyp 39591  df-laut 39592  df-ldil 39707  df-ltrn 39708  df-trl 39762  df-tendo 40358  df-edring 40360  df-disoa 40632  df-dvech 40682  df-dib 40742  df-dic 40776  df-dih 40832  df-doch 40951
This theorem is referenced by:  dochsnkrlem3  41074  lcfl2  41096
  Copyright terms: Public domain W3C validator