Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochkrshp4 Structured version   Visualization version   GIF version

Theorem dochkrshp4 37410
Description: Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.)
Hypotheses
Ref Expression
dochkrshp3.h 𝐻 = (LHyp‘𝐾)
dochkrshp3.o = ((ocH‘𝐾)‘𝑊)
dochkrshp3.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochkrshp3.v 𝑉 = (Base‘𝑈)
dochkrshp3.f 𝐹 = (LFnl‘𝑈)
dochkrshp3.l 𝐿 = (LKer‘𝑈)
dochkrshp3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dochkrshp3.g (𝜑𝐺𝐹)
Assertion
Ref Expression
dochkrshp4 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉)))

Proof of Theorem dochkrshp4
StepHypRef Expression
1 df-ne 2972 . . . . . 6 ((𝐿𝐺) ≠ 𝑉 ↔ ¬ (𝐿𝐺) = 𝑉)
2 dochkrshp3.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
3 dochkrshp3.o . . . . . . . . 9 = ((ocH‘𝐾)‘𝑊)
4 dochkrshp3.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dochkrshp3.v . . . . . . . . 9 𝑉 = (Base‘𝑈)
6 dochkrshp3.f . . . . . . . . 9 𝐹 = (LFnl‘𝑈)
7 dochkrshp3.l . . . . . . . . 9 𝐿 = (LKer‘𝑈)
8 dochkrshp3.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 dochkrshp3.g . . . . . . . . 9 (𝜑𝐺𝐹)
102, 3, 4, 5, 6, 7, 8, 9dochkrshp3 37409 . . . . . . . 8 (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ↔ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ (𝐿𝐺) ≠ 𝑉)))
1110biimprd 240 . . . . . . 7 (𝜑 → ((( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ (𝐿𝐺) ≠ 𝑉) → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
1211expdimp 445 . . . . . 6 ((𝜑 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) → ((𝐿𝐺) ≠ 𝑉 → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
131, 12syl5bir 235 . . . . 5 ((𝜑 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) → (¬ (𝐿𝐺) = 𝑉 → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
1413orrd 890 . . . 4 ((𝜑 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) → ((𝐿𝐺) = 𝑉 ∨ ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
1514orcomd 898 . . 3 ((𝜑 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)) → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉))
1615ex 402 . 2 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉)))
17 simpl 475 . . . 4 ((( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ (𝐿𝐺) ≠ 𝑉) → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))
1810, 17syl6bi 245 . . 3 (𝜑 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
192, 4, 3, 5, 8dochoc1 37382 . . . 4 (𝜑 → ( ‘( 𝑉)) = 𝑉)
20 2fveq3 6416 . . . . 5 ((𝐿𝐺) = 𝑉 → ( ‘( ‘(𝐿𝐺))) = ( ‘( 𝑉)))
21 id 22 . . . . 5 ((𝐿𝐺) = 𝑉 → (𝐿𝐺) = 𝑉)
2220, 21eqeq12d 2814 . . . 4 ((𝐿𝐺) = 𝑉 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ ( ‘( 𝑉)) = 𝑉))
2319, 22syl5ibrcom 239 . . 3 (𝜑 → ((𝐿𝐺) = 𝑉 → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
2418, 23jaod 886 . 2 (𝜑 → ((( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉) → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
2516, 24impbid 204 1 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wo 874   = wceq 1653  wcel 2157  wne 2971  cfv 6101  Basecbs 16184  LFnlclfn 35078  LKerclk 35106  HLchlt 35371  LHypclh 36005  DVecHcdvh 37099  ocHcoch 37368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-riotaBAD 34974
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-undef 7637  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-0g 16417  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-cntz 18062  df-lsm 18364  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-dvr 18999  df-drng 19067  df-lmod 19183  df-lss 19251  df-lsp 19293  df-lvec 19424  df-lsatoms 34997  df-lshyp 34998  df-lfl 35079  df-lkr 35107  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372  df-llines 35519  df-lplanes 35520  df-lvols 35521  df-lines 35522  df-psubsp 35524  df-pmap 35525  df-padd 35817  df-lhyp 36009  df-laut 36010  df-ldil 36125  df-ltrn 36126  df-trl 36180  df-tendo 36776  df-edring 36778  df-disoa 37050  df-dvech 37100  df-dib 37160  df-dic 37194  df-dih 37250  df-doch 37369
This theorem is referenced by:  dochsnkrlem3  37492  lcfl2  37514
  Copyright terms: Public domain W3C validator