| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dochkrshp4 | Structured version Visualization version GIF version | ||
| Description: Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| dochkrshp3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dochkrshp3.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| dochkrshp3.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dochkrshp3.v | ⊢ 𝑉 = (Base‘𝑈) |
| dochkrshp3.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| dochkrshp3.l | ⊢ 𝐿 = (LKer‘𝑈) |
| dochkrshp3.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dochkrshp3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| dochkrshp4 | ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ∨ (𝐿‘𝐺) = 𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2932 | . . . . . 6 ⊢ ((𝐿‘𝐺) ≠ 𝑉 ↔ ¬ (𝐿‘𝐺) = 𝑉) | |
| 2 | dochkrshp3.h | . . . . . . . . 9 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | dochkrshp3.o | . . . . . . . . 9 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 4 | dochkrshp3.u | . . . . . . . . 9 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | dochkrshp3.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑈) | |
| 6 | dochkrshp3.f | . . . . . . . . 9 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 7 | dochkrshp3.l | . . . . . . . . 9 ⊢ 𝐿 = (LKer‘𝑈) | |
| 8 | dochkrshp3.k | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | dochkrshp3.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | dochkrshp3 41349 | . . . . . . . 8 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ≠ 𝑉))) |
| 11 | 10 | biimprd 248 | . . . . . . 7 ⊢ (𝜑 → ((( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ≠ 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉)) |
| 12 | 11 | expdimp 452 | . . . . . 6 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) → ((𝐿‘𝐺) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉)) |
| 13 | 1, 12 | biimtrrid 243 | . . . . 5 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) → (¬ (𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉)) |
| 14 | 13 | orrd 863 | . . . 4 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) → ((𝐿‘𝐺) = 𝑉 ∨ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉)) |
| 15 | 14 | orcomd 871 | . . 3 ⊢ ((𝜑 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ∨ (𝐿‘𝐺) = 𝑉)) |
| 16 | 15 | ex 412 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ∨ (𝐿‘𝐺) = 𝑉))) |
| 17 | simpl 482 | . . . 4 ⊢ ((( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ∧ (𝐿‘𝐺) ≠ 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) | |
| 18 | 10, 17 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 19 | 2, 4, 3, 5, 8 | dochoc1 41322 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉) |
| 20 | 2fveq3 6891 | . . . . 5 ⊢ ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = ( ⊥ ‘( ⊥ ‘𝑉))) | |
| 21 | id 22 | . . . . 5 ⊢ ((𝐿‘𝐺) = 𝑉 → (𝐿‘𝐺) = 𝑉) | |
| 22 | 20, 21 | eqeq12d 2750 | . . . 4 ⊢ ((𝐿‘𝐺) = 𝑉 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ ( ⊥ ‘( ⊥ ‘𝑉)) = 𝑉)) |
| 23 | 19, 22 | syl5ibrcom 247 | . . 3 ⊢ (𝜑 → ((𝐿‘𝐺) = 𝑉 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 24 | 18, 23 | jaod 859 | . 2 ⊢ (𝜑 → ((( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ∨ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 25 | 16, 24 | impbid 212 | 1 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) ≠ 𝑉 ∨ (𝐿‘𝐺) = 𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ‘cfv 6541 Basecbs 17229 LFnlclfn 39017 LKerclk 39045 HLchlt 39310 LHypclh 39945 DVecHcdvh 41039 ocHcoch 41308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-riotaBAD 38913 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-0g 17457 df-proset 18310 df-poset 18329 df-plt 18344 df-lub 18360 df-glb 18361 df-join 18362 df-meet 18363 df-p0 18439 df-p1 18440 df-lat 18446 df-clat 18513 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-cntz 19304 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-drng 20699 df-lmod 20828 df-lss 20898 df-lsp 20938 df-lvec 21070 df-lsatoms 38936 df-lshyp 38937 df-lfl 39018 df-lkr 39046 df-oposet 39136 df-ol 39138 df-oml 39139 df-covers 39226 df-ats 39227 df-atl 39258 df-cvlat 39282 df-hlat 39311 df-llines 39459 df-lplanes 39460 df-lvols 39461 df-lines 39462 df-psubsp 39464 df-pmap 39465 df-padd 39757 df-lhyp 39949 df-laut 39950 df-ldil 40065 df-ltrn 40066 df-trl 40120 df-tendo 40716 df-edring 40718 df-disoa 40990 df-dvech 41040 df-dib 41100 df-dic 41134 df-dih 41190 df-doch 41309 |
| This theorem is referenced by: dochsnkrlem3 41432 lcfl2 41454 |
| Copyright terms: Public domain | W3C validator |