![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > posglbd | Structured version Visualization version GIF version |
Description: Properties which determine the greatest lower bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
posglbd.l | ⊢ ≤ = (le‘𝐾) |
posglbd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
posglbd.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) |
posglbd.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
posglbd.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
posglbd.t | ⊢ (𝜑 → 𝑇 ∈ 𝐵) |
posglbd.lb | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) |
posglbd.gt | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) |
Ref | Expression |
---|---|
posglbd | ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2826 | . . 3 ⊢ (ODual‘𝐾) = (ODual‘𝐾) | |
2 | posglbd.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | oduleval 17485 | . 2 ⊢ ◡ ≤ = (le‘(ODual‘𝐾)) |
4 | posglbd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
5 | eqid 2826 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | 1, 5 | odubas 17487 | . . 3 ⊢ (Base‘𝐾) = (Base‘(ODual‘𝐾)) |
7 | 4, 6 | syl6eq 2878 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘(ODual‘𝐾))) |
8 | posglbd.g | . . 3 ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) | |
9 | posglbd.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
10 | eqid 2826 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
11 | 1, 10 | odulub 17495 | . . . 4 ⊢ (𝐾 ∈ Poset → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → (glb‘𝐾) = (lub‘(ODual‘𝐾))) |
13 | 8, 12 | eqtrd 2862 | . 2 ⊢ (𝜑 → 𝐺 = (lub‘(ODual‘𝐾))) |
14 | 1 | odupos 17489 | . . 3 ⊢ (𝐾 ∈ Poset → (ODual‘𝐾) ∈ Poset) |
15 | 9, 14 | syl 17 | . 2 ⊢ (𝜑 → (ODual‘𝐾) ∈ Poset) |
16 | posglbd.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
17 | posglbd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐵) | |
18 | posglbd.lb | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) | |
19 | vex 3418 | . . . . 5 ⊢ 𝑥 ∈ V | |
20 | brcnvg 5535 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑇 ∈ 𝐵) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) | |
21 | 19, 17, 20 | sylancr 583 | . . . 4 ⊢ (𝜑 → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
22 | 21 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥◡ ≤ 𝑇 ↔ 𝑇 ≤ 𝑥)) |
23 | 18, 22 | mpbird 249 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥◡ ≤ 𝑇) |
24 | vex 3418 | . . . . . 6 ⊢ 𝑦 ∈ V | |
25 | 19, 24 | brcnv 5538 | . . . . 5 ⊢ (𝑥◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑥) |
26 | 25 | ralbii 3190 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦 ↔ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) |
27 | posglbd.gt | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) | |
28 | 26, 27 | syl3an3b 1530 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑦 ≤ 𝑇) |
29 | brcnvg 5535 | . . . . 5 ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑦 ∈ V) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) | |
30 | 17, 24, 29 | sylancl 582 | . . . 4 ⊢ (𝜑 → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
31 | 30 | 3ad2ant1 1169 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → (𝑇◡ ≤ 𝑦 ↔ 𝑦 ≤ 𝑇)) |
32 | 28, 31 | mpbird 249 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥◡ ≤ 𝑦) → 𝑇◡ ≤ 𝑦) |
33 | 3, 7, 13, 15, 16, 17, 23, 32 | poslubdg 17503 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∀wral 3118 Vcvv 3415 ⊆ wss 3799 class class class wbr 4874 ◡ccnv 5342 ‘cfv 6124 Basecbs 16223 lecple 16313 Posetcpo 17294 lubclub 17296 glbcglb 17297 ODualcodu 17482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-7 11420 df-8 11421 df-9 11422 df-dec 11823 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ple 16326 df-proset 17282 df-poset 17300 df-lub 17328 df-glb 17329 df-odu 17483 |
This theorem is referenced by: mrelatglb 17538 mrelatglb0 17539 |
Copyright terms: Public domain | W3C validator |