MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnvalfi Structured version   Visualization version   GIF version

Theorem psgnvalfi 19376
Description: Value of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019.)
Hypotheses
Ref Expression
psgnfvalfi.g 𝐺 = (SymGrp‘𝐷)
psgnfvalfi.b 𝐵 = (Base‘𝐺)
psgnfvalfi.t 𝑇 = ran (pmTrsp‘𝐷)
psgnfvalfi.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnvalfi ((𝐷 ∈ Fin ∧ 𝑃𝐵) → (𝑁𝑃) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝑤,𝑠,𝐷   𝑤,𝑇   𝐺,𝑠,𝑤   𝑁,𝑠,𝑤   𝑃,𝑠,𝑤   𝑇,𝑠
Allowed substitution hints:   𝐵(𝑤,𝑠)

Proof of Theorem psgnvalfi
StepHypRef Expression
1 simpr 485 . . 3 ((𝐷 ∈ Fin ∧ 𝑃𝐵) → 𝑃𝐵)
2 psgnfvalfi.g . . . 4 𝐺 = (SymGrp‘𝐷)
3 psgnfvalfi.b . . . 4 𝐵 = (Base‘𝐺)
42, 3sygbasnfpfi 19374 . . 3 ((𝐷 ∈ Fin ∧ 𝑃𝐵) → dom (𝑃 ∖ I ) ∈ Fin)
5 psgnfvalfi.n . . . 4 𝑁 = (pmSgn‘𝐷)
62, 5, 3psgneldm 19365 . . 3 (𝑃 ∈ dom 𝑁 ↔ (𝑃𝐵 ∧ dom (𝑃 ∖ I ) ∈ Fin))
71, 4, 6sylanbrc 583 . 2 ((𝐷 ∈ Fin ∧ 𝑃𝐵) → 𝑃 ∈ dom 𝑁)
8 psgnfvalfi.t . . 3 𝑇 = ran (pmTrsp‘𝐷)
92, 8, 5psgnval 19369 . 2 (𝑃 ∈ dom 𝑁 → (𝑁𝑃) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
107, 9syl 17 1 ((𝐷 ∈ Fin ∧ 𝑃𝐵) → (𝑁𝑃) = (℩𝑠𝑤 ∈ Word 𝑇(𝑃 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3070  cdif 3944   I cid 5572  dom cdm 5675  ran crn 5676  cio 6490  cfv 6540  (class class class)co 7405  Fincfn 8935  1c1 11107  -cneg 11441  cexp 14023  chash 14286  Word cword 14460  Basecbs 17140   Σg cgsu 17382  SymGrpcsymg 19228  pmTrspcpmtr 19303  pmSgncpsgn 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-tset 17212  df-efmnd 18746  df-symg 19229  df-psgn 19353
This theorem is referenced by:  psgndif  21146
  Copyright terms: Public domain W3C validator