![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsmtrcl | Structured version Visualization version GIF version |
Description: The group sum of transpositions of a finite set is a permutation, see also psgneldm2i 19415. (Contributed by AV, 19-Jan-2019.) |
Ref | Expression |
---|---|
gsmtrcl.s | ⊢ 𝑆 = (SymGrp‘𝑁) |
gsmtrcl.b | ⊢ 𝐵 = (Base‘𝑆) |
gsmtrcl.t | ⊢ 𝑇 = ran (pmTrsp‘𝑁) |
Ref | Expression |
---|---|
gsmtrcl | ⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsmtrcl.s | . . 3 ⊢ 𝑆 = (SymGrp‘𝑁) | |
2 | gsmtrcl.t | . . 3 ⊢ 𝑇 = ran (pmTrsp‘𝑁) | |
3 | eqid 2731 | . . 3 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
4 | 1, 2, 3 | psgneldm2i 19415 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ dom (pmSgn‘𝑁)) |
5 | gsmtrcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
6 | 1, 3, 5 | psgneldm 19413 | . . 3 ⊢ ((𝑆 Σg 𝑊) ∈ dom (pmSgn‘𝑁) ↔ ((𝑆 Σg 𝑊) ∈ 𝐵 ∧ dom ((𝑆 Σg 𝑊) ∖ I ) ∈ Fin)) |
7 | ax-1 6 | . . . 4 ⊢ ((𝑆 Σg 𝑊) ∈ 𝐵 → ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵)) | |
8 | 7 | adantr 480 | . . 3 ⊢ (((𝑆 Σg 𝑊) ∈ 𝐵 ∧ dom ((𝑆 Σg 𝑊) ∖ I ) ∈ Fin) → ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵)) |
9 | 6, 8 | sylbi 216 | . 2 ⊢ ((𝑆 Σg 𝑊) ∈ dom (pmSgn‘𝑁) → ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵)) |
10 | 4, 9 | mpcom 38 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 I cid 5573 dom cdm 5676 ran crn 5677 ‘cfv 6543 (class class class)co 7412 Fincfn 8942 Word cword 14469 Basecbs 17149 Σg cgsu 17391 SymGrpcsymg 19276 pmTrspcpmtr 19351 pmSgncpsgn 19399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-tset 17221 df-0g 17392 df-gsum 17393 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-efmnd 18787 df-grp 18859 df-minusg 18860 df-subg 19040 df-symg 19277 df-pmtr 19352 df-psgn 19401 |
This theorem is referenced by: psgndiflemB 21373 |
Copyright terms: Public domain | W3C validator |