![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsmtrcl | Structured version Visualization version GIF version |
Description: The group sum of transpositions of a finite set is a permutation, see also psgneldm2i 18320. (Contributed by AV, 19-Jan-2019.) |
Ref | Expression |
---|---|
gsmtrcl.s | ⊢ 𝑆 = (SymGrp‘𝑁) |
gsmtrcl.b | ⊢ 𝐵 = (Base‘𝑆) |
gsmtrcl.t | ⊢ 𝑇 = ran (pmTrsp‘𝑁) |
Ref | Expression |
---|---|
gsmtrcl | ⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsmtrcl.s | . . 3 ⊢ 𝑆 = (SymGrp‘𝑁) | |
2 | gsmtrcl.t | . . 3 ⊢ 𝑇 = ran (pmTrsp‘𝑁) | |
3 | eqid 2778 | . . 3 ⊢ (pmSgn‘𝑁) = (pmSgn‘𝑁) | |
4 | 1, 2, 3 | psgneldm2i 18320 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ dom (pmSgn‘𝑁)) |
5 | gsmtrcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
6 | 1, 3, 5 | psgneldm 18318 | . . 3 ⊢ ((𝑆 Σg 𝑊) ∈ dom (pmSgn‘𝑁) ↔ ((𝑆 Σg 𝑊) ∈ 𝐵 ∧ dom ((𝑆 Σg 𝑊) ∖ I ) ∈ Fin)) |
7 | ax-1 6 | . . . 4 ⊢ ((𝑆 Σg 𝑊) ∈ 𝐵 → ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵)) | |
8 | 7 | adantr 474 | . . 3 ⊢ (((𝑆 Σg 𝑊) ∈ 𝐵 ∧ dom ((𝑆 Σg 𝑊) ∖ I ) ∈ Fin) → ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵)) |
9 | 6, 8 | sylbi 209 | . 2 ⊢ ((𝑆 Σg 𝑊) ∈ dom (pmSgn‘𝑁) → ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵)) |
10 | 4, 9 | mpcom 38 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑊 ∈ Word 𝑇) → (𝑆 Σg 𝑊) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∖ cdif 3789 I cid 5262 dom cdm 5357 ran crn 5358 ‘cfv 6137 (class class class)co 6924 Fincfn 8243 Word cword 13605 Basecbs 16266 Σg cgsu 16498 SymGrpcsymg 18191 pmTrspcpmtr 18255 pmSgncpsgn 18303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-z 11734 df-uz 11998 df-fz 12649 df-fzo 12790 df-seq 13125 df-hash 13442 df-word 13606 df-concat 13667 df-s1 13692 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-tset 16368 df-0g 16499 df-gsum 16500 df-mre 16643 df-mrc 16644 df-acs 16646 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-submnd 17733 df-grp 17823 df-minusg 17824 df-subg 17986 df-symg 18192 df-pmtr 18256 df-psgn 18305 |
This theorem is referenced by: psgndiflemB 20353 |
Copyright terms: Public domain | W3C validator |