![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > numdenneg | Structured version Visualization version GIF version |
Description: Numerator and denominator of the negative. (Contributed by Thierry Arnoux, 27-Oct-2017.) |
Ref | Expression |
---|---|
numdenneg | β’ (π β β β ((numerβ-π) = -(numerβπ) β§ (denomβ-π) = (denomβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnegcl 12980 | . 2 β’ (π β β β -π β β) | |
2 | qnumcl 16711 | . . 3 β’ (π β β β (numerβπ) β β€) | |
3 | 2 | znegcld 12698 | . 2 β’ (π β β β -(numerβπ) β β€) |
4 | qdencl 16712 | . 2 β’ (π β β β (denomβπ) β β) | |
5 | 4 | nnzd 12615 | . . . 4 β’ (π β β β (denomβπ) β β€) |
6 | neggcd 16497 | . . . 4 β’ (((numerβπ) β β€ β§ (denomβπ) β β€) β (-(numerβπ) gcd (denomβπ)) = ((numerβπ) gcd (denomβπ))) | |
7 | 2, 5, 6 | syl2anc 582 | . . 3 β’ (π β β β (-(numerβπ) gcd (denomβπ)) = ((numerβπ) gcd (denomβπ))) |
8 | qnumdencoprm 16716 | . . 3 β’ (π β β β ((numerβπ) gcd (denomβπ)) = 1) | |
9 | 7, 8 | eqtrd 2765 | . 2 β’ (π β β β (-(numerβπ) gcd (denomβπ)) = 1) |
10 | qeqnumdivden 16717 | . . . 4 β’ (π β β β π = ((numerβπ) / (denomβπ))) | |
11 | 10 | negeqd 11484 | . . 3 β’ (π β β β -π = -((numerβπ) / (denomβπ))) |
12 | 2 | zcnd 12697 | . . . 4 β’ (π β β β (numerβπ) β β) |
13 | 4 | nncnd 12258 | . . . 4 β’ (π β β β (denomβπ) β β) |
14 | 4 | nnne0d 12292 | . . . 4 β’ (π β β β (denomβπ) β 0) |
15 | 12, 13, 14 | divnegd 12033 | . . 3 β’ (π β β β -((numerβπ) / (denomβπ)) = (-(numerβπ) / (denomβπ))) |
16 | 11, 15 | eqtrd 2765 | . 2 β’ (π β β β -π = (-(numerβπ) / (denomβπ))) |
17 | qnumdenbi 16715 | . . 3 β’ ((-π β β β§ -(numerβπ) β β€ β§ (denomβπ) β β) β (((-(numerβπ) gcd (denomβπ)) = 1 β§ -π = (-(numerβπ) / (denomβπ))) β ((numerβ-π) = -(numerβπ) β§ (denomβ-π) = (denomβπ)))) | |
18 | 17 | biimpa 475 | . 2 β’ (((-π β β β§ -(numerβπ) β β€ β§ (denomβπ) β β) β§ ((-(numerβπ) gcd (denomβπ)) = 1 β§ -π = (-(numerβπ) / (denomβπ)))) β ((numerβ-π) = -(numerβπ) β§ (denomβ-π) = (denomβπ))) |
19 | 1, 3, 4, 9, 16, 18 | syl32anc 1375 | 1 β’ (π β β β ((numerβ-π) = -(numerβπ) β§ (denomβ-π) = (denomβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6543 (class class class)co 7416 1c1 11139 -cneg 11475 / cdiv 11901 βcn 12242 β€cz 12588 βcq 12962 gcd cgcd 16468 numercnumer 16704 denomcdenom 16705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-q 12963 df-rp 13007 df-fl 13789 df-mod 13867 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-dvds 16231 df-gcd 16469 df-numer 16706 df-denom 16707 |
This theorem is referenced by: divnumden2 32626 |
Copyright terms: Public domain | W3C validator |