Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rpgtrecnn Structured version   Visualization version   GIF version

Theorem rpgtrecnn 45330
Description: Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
rpgtrecnn (𝐴 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rpgtrecnn
StepHypRef Expression
1 rpreccl 13059 . . . . 5 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
21rpred 13075 . . . 4 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
31rpge0d 13079 . . . 4 (𝐴 ∈ ℝ+ → 0 ≤ (1 / 𝐴))
4 flge0nn0 13857 . . . 4 (((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)) → (⌊‘(1 / 𝐴)) ∈ ℕ0)
52, 3, 4syl2anc 584 . . 3 (𝐴 ∈ ℝ+ → (⌊‘(1 / 𝐴)) ∈ ℕ0)
6 nn0p1nn 12563 . . 3 ((⌊‘(1 / 𝐴)) ∈ ℕ0 → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
75, 6syl 17 . 2 (𝐴 ∈ ℝ+ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
8 flltp1 13837 . . . . 5 ((1 / 𝐴) ∈ ℝ → (1 / 𝐴) < ((⌊‘(1 / 𝐴)) + 1))
92, 8syl 17 . . . 4 (𝐴 ∈ ℝ+ → (1 / 𝐴) < ((⌊‘(1 / 𝐴)) + 1))
107nnrpd 13073 . . . . 5 (𝐴 ∈ ℝ+ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ+)
111, 10ltrecd 13093 . . . 4 (𝐴 ∈ ℝ+ → ((1 / 𝐴) < ((⌊‘(1 / 𝐴)) + 1) ↔ (1 / ((⌊‘(1 / 𝐴)) + 1)) < (1 / (1 / 𝐴))))
129, 11mpbid 232 . . 3 (𝐴 ∈ ℝ+ → (1 / ((⌊‘(1 / 𝐴)) + 1)) < (1 / (1 / 𝐴)))
13 rpcn 13043 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
14 rpne0 13049 . . . 4 (𝐴 ∈ ℝ+𝐴 ≠ 0)
1513, 14recrecd 12038 . . 3 (𝐴 ∈ ℝ+ → (1 / (1 / 𝐴)) = 𝐴)
1612, 15breqtrd 5174 . 2 (𝐴 ∈ ℝ+ → (1 / ((⌊‘(1 / 𝐴)) + 1)) < 𝐴)
17 oveq2 7439 . . . 4 (𝑛 = ((⌊‘(1 / 𝐴)) + 1) → (1 / 𝑛) = (1 / ((⌊‘(1 / 𝐴)) + 1)))
1817breq1d 5158 . . 3 (𝑛 = ((⌊‘(1 / 𝐴)) + 1) → ((1 / 𝑛) < 𝐴 ↔ (1 / ((⌊‘(1 / 𝐴)) + 1)) < 𝐴))
1918rspcev 3622 . 2 ((((⌊‘(1 / 𝐴)) + 1) ∈ ℕ ∧ (1 / ((⌊‘(1 / 𝐴)) + 1)) < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
207, 16, 19syl2anc 584 1 (𝐴 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294   / cdiv 11918  cn 12264  0cn0 12524  +crp 13032  cfl 13827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829
This theorem is referenced by:  xrralrecnnle  45333  iunhoiioolem  46631  smflimlem4  46730
  Copyright terms: Public domain W3C validator