Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpgtrecnn | Structured version Visualization version GIF version |
Description: Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
rpgtrecnn | ⊢ (𝐴 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpreccl 12685 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+) | |
2 | 1 | rpred 12701 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ) |
3 | 1 | rpge0d 12705 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ (1 / 𝐴)) |
4 | flge0nn0 13468 | . . . 4 ⊢ (((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)) → (⌊‘(1 / 𝐴)) ∈ ℕ0) | |
5 | 2, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (⌊‘(1 / 𝐴)) ∈ ℕ0) |
6 | nn0p1nn 12202 | . . 3 ⊢ ((⌊‘(1 / 𝐴)) ∈ ℕ0 → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ) |
8 | flltp1 13448 | . . . . 5 ⊢ ((1 / 𝐴) ∈ ℝ → (1 / 𝐴) < ((⌊‘(1 / 𝐴)) + 1)) | |
9 | 2, 8 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (1 / 𝐴) < ((⌊‘(1 / 𝐴)) + 1)) |
10 | 7 | nnrpd 12699 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ+) |
11 | 1, 10 | ltrecd 12719 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → ((1 / 𝐴) < ((⌊‘(1 / 𝐴)) + 1) ↔ (1 / ((⌊‘(1 / 𝐴)) + 1)) < (1 / (1 / 𝐴)))) |
12 | 9, 11 | mpbid 231 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (1 / ((⌊‘(1 / 𝐴)) + 1)) < (1 / (1 / 𝐴))) |
13 | rpcn 12669 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
14 | rpne0 12675 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
15 | 13, 14 | recrecd 11678 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (1 / (1 / 𝐴)) = 𝐴) |
16 | 12, 15 | breqtrd 5096 | . 2 ⊢ (𝐴 ∈ ℝ+ → (1 / ((⌊‘(1 / 𝐴)) + 1)) < 𝐴) |
17 | oveq2 7263 | . . . 4 ⊢ (𝑛 = ((⌊‘(1 / 𝐴)) + 1) → (1 / 𝑛) = (1 / ((⌊‘(1 / 𝐴)) + 1))) | |
18 | 17 | breq1d 5080 | . . 3 ⊢ (𝑛 = ((⌊‘(1 / 𝐴)) + 1) → ((1 / 𝑛) < 𝐴 ↔ (1 / ((⌊‘(1 / 𝐴)) + 1)) < 𝐴)) |
19 | 18 | rspcev 3552 | . 2 ⊢ ((((⌊‘(1 / 𝐴)) + 1) ∈ ℕ ∧ (1 / ((⌊‘(1 / 𝐴)) + 1)) < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) |
20 | 7, 16, 19 | syl2anc 583 | 1 ⊢ (𝐴 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 ℝ+crp 12659 ⌊cfl 13438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 |
This theorem is referenced by: xrralrecnnle 42812 iunhoiioolem 44103 smflimlem4 44196 |
Copyright terms: Public domain | W3C validator |