Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rpgtrecnn Structured version   Visualization version   GIF version

Theorem rpgtrecnn 45417
Description: Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
rpgtrecnn (𝐴 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rpgtrecnn
StepHypRef Expression
1 rpreccl 12915 . . . . 5 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
21rpred 12931 . . . 4 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ)
31rpge0d 12935 . . . 4 (𝐴 ∈ ℝ+ → 0 ≤ (1 / 𝐴))
4 flge0nn0 13721 . . . 4 (((1 / 𝐴) ∈ ℝ ∧ 0 ≤ (1 / 𝐴)) → (⌊‘(1 / 𝐴)) ∈ ℕ0)
52, 3, 4syl2anc 584 . . 3 (𝐴 ∈ ℝ+ → (⌊‘(1 / 𝐴)) ∈ ℕ0)
6 nn0p1nn 12417 . . 3 ((⌊‘(1 / 𝐴)) ∈ ℕ0 → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
75, 6syl 17 . 2 (𝐴 ∈ ℝ+ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℕ)
8 flltp1 13701 . . . . 5 ((1 / 𝐴) ∈ ℝ → (1 / 𝐴) < ((⌊‘(1 / 𝐴)) + 1))
92, 8syl 17 . . . 4 (𝐴 ∈ ℝ+ → (1 / 𝐴) < ((⌊‘(1 / 𝐴)) + 1))
107nnrpd 12929 . . . . 5 (𝐴 ∈ ℝ+ → ((⌊‘(1 / 𝐴)) + 1) ∈ ℝ+)
111, 10ltrecd 12949 . . . 4 (𝐴 ∈ ℝ+ → ((1 / 𝐴) < ((⌊‘(1 / 𝐴)) + 1) ↔ (1 / ((⌊‘(1 / 𝐴)) + 1)) < (1 / (1 / 𝐴))))
129, 11mpbid 232 . . 3 (𝐴 ∈ ℝ+ → (1 / ((⌊‘(1 / 𝐴)) + 1)) < (1 / (1 / 𝐴)))
13 rpcn 12898 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
14 rpne0 12904 . . . 4 (𝐴 ∈ ℝ+𝐴 ≠ 0)
1513, 14recrecd 11891 . . 3 (𝐴 ∈ ℝ+ → (1 / (1 / 𝐴)) = 𝐴)
1612, 15breqtrd 5117 . 2 (𝐴 ∈ ℝ+ → (1 / ((⌊‘(1 / 𝐴)) + 1)) < 𝐴)
17 oveq2 7354 . . . 4 (𝑛 = ((⌊‘(1 / 𝐴)) + 1) → (1 / 𝑛) = (1 / ((⌊‘(1 / 𝐴)) + 1)))
1817breq1d 5101 . . 3 (𝑛 = ((⌊‘(1 / 𝐴)) + 1) → ((1 / 𝑛) < 𝐴 ↔ (1 / ((⌊‘(1 / 𝐴)) + 1)) < 𝐴))
1918rspcev 3577 . 2 ((((⌊‘(1 / 𝐴)) + 1) ∈ ℕ ∧ (1 / ((⌊‘(1 / 𝐴)) + 1)) < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
207, 16, 19syl2anc 584 1 (𝐴 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   < clt 11143  cle 11144   / cdiv 11771  cn 12122  0cn0 12378  +crp 12887  cfl 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fl 13693
This theorem is referenced by:  xrralrecnnle  45420  iunhoiioolem  46712  smflimlem4  46811
  Copyright terms: Public domain W3C validator