| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sdrgfldext | Structured version Visualization version GIF version | ||
| Description: A field 𝐸 and any sub-division-ring 𝐹 of 𝐸 form a field extension. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| sdrgfldext.b | ⊢ 𝐵 = (Base‘𝐸) |
| sdrgfldext.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| sdrgfldext.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| Ref | Expression |
|---|---|
| sdrgfldext | ⊢ (𝜑 → 𝐸/FldExt(𝐸 ↾s 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdrgfldext.e | . 2 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 2 | sdrgfldext.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 3 | fldsdrgfld 20766 | . . 3 ⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸 ↾s 𝐹) ∈ Field) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Field) |
| 5 | sdrgfldext.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐸) | |
| 6 | 5 | sdrgss 20761 | . . . . 5 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝐵) |
| 7 | 2, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
| 8 | eqid 2734 | . . . . 5 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
| 9 | 8, 5 | ressbas2 17260 | . . . 4 ⊢ (𝐹 ⊆ 𝐵 → 𝐹 = (Base‘(𝐸 ↾s 𝐹))) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 = (Base‘(𝐸 ↾s 𝐹))) |
| 11 | 10 | oveq2d 7428 | . 2 ⊢ (𝜑 → (𝐸 ↾s 𝐹) = (𝐸 ↾s (Base‘(𝐸 ↾s 𝐹)))) |
| 12 | sdrgsubrg 20759 | . . . 4 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 13 | 2, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 14 | 10, 13 | eqeltrrd 2834 | . 2 ⊢ (𝜑 → (Base‘(𝐸 ↾s 𝐹)) ∈ (SubRing‘𝐸)) |
| 15 | brfldext 33624 | . . 3 ⊢ ((𝐸 ∈ Field ∧ (𝐸 ↾s 𝐹) ∈ Field) → (𝐸/FldExt(𝐸 ↾s 𝐹) ↔ ((𝐸 ↾s 𝐹) = (𝐸 ↾s (Base‘(𝐸 ↾s 𝐹))) ∧ (Base‘(𝐸 ↾s 𝐹)) ∈ (SubRing‘𝐸)))) | |
| 16 | 15 | biimpar 477 | . 2 ⊢ (((𝐸 ∈ Field ∧ (𝐸 ↾s 𝐹) ∈ Field) ∧ ((𝐸 ↾s 𝐹) = (𝐸 ↾s (Base‘(𝐸 ↾s 𝐹))) ∧ (Base‘(𝐸 ↾s 𝐹)) ∈ (SubRing‘𝐸))) → 𝐸/FldExt(𝐸 ↾s 𝐹)) |
| 17 | 1, 4, 11, 14, 16 | syl22anc 838 | 1 ⊢ (𝜑 → 𝐸/FldExt(𝐸 ↾s 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 class class class wbr 5123 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 ↾s cress 17251 SubRingcsubrg 20536 Fieldcfield 20697 SubDRingcsdrg 20754 /FldExtcfldext 33615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-0g 17456 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-cmn 19767 df-mgp 20105 df-ring 20199 df-cring 20200 df-subrg 20537 df-field 20699 df-sdrg 20755 df-fldext 33619 |
| This theorem is referenced by: constrext2chnlem 33721 |
| Copyright terms: Public domain | W3C validator |