Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrdom Structured version   Visualization version   GIF version

Theorem subrdom 33258
Description: A subring of a domain is a domain. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
subrdom.1 (𝜑𝑅 ∈ Domn)
subrdom.2 (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
subrdom (𝜑 → (𝑅s 𝑆) ∈ Domn)

Proof of Theorem subrdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrdom.1 . . . 4 (𝜑𝑅 ∈ Domn)
2 domnnzr 20623 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ NzRing)
4 subrdom.2 . . 3 (𝜑𝑆 ∈ (SubRing‘𝑅))
5 eqid 2733 . . . 4 (𝑅s 𝑆) = (𝑅s 𝑆)
65subrgnzr 20511 . . 3 ((𝑅 ∈ NzRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → (𝑅s 𝑆) ∈ NzRing)
73, 4, 6syl2anc 584 . 2 (𝜑 → (𝑅s 𝑆) ∈ NzRing)
81ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑅 ∈ Domn)
9 eqid 2733 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
109subrgss 20489 . . . . . . . . . 10 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
114, 10syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ (Base‘𝑅))
1211ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑆 ⊆ (Base‘𝑅))
13 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥 ∈ (Base‘(𝑅s 𝑆)))
145, 9ressbas2 17151 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘(𝑅s 𝑆)))
1511, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 = (Base‘(𝑅s 𝑆)))
1615ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑆 = (Base‘(𝑅s 𝑆)))
1713, 16eleqtrrd 2836 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥𝑆)
1812, 17sseldd 3931 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥 ∈ (Base‘𝑅))
19 simplr 768 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦 ∈ (Base‘(𝑅s 𝑆)))
2019, 16eleqtrrd 2836 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦𝑆)
2112, 20sseldd 3931 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦 ∈ (Base‘𝑅))
22 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)))
234elexd 3461 . . . . . . . . . . 11 (𝜑𝑆 ∈ V)
24 eqid 2733 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
255, 24ressmulr 17213 . . . . . . . . . . 11 (𝑆 ∈ V → (.r𝑅) = (.r‘(𝑅s 𝑆)))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → (.r𝑅) = (.r‘(𝑅s 𝑆)))
2726oveqd 7369 . . . . . . . . 9 (𝜑 → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(𝑅s 𝑆))𝑦))
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(𝑅s 𝑆))𝑦))
29 subrgrcl 20493 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
30 ringmnd 20163 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
314, 29, 303syl 18 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
32 subrgsubg 20494 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ∈ (SubGrp‘𝑅))
33 eqid 2733 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
3433subg0cl 19049 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑆)
354, 32, 343syl 18 . . . . . . . . . 10 (𝜑 → (0g𝑅) ∈ 𝑆)
365, 9, 33ress0g 18672 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ 𝑆𝑆 ⊆ (Base‘𝑅)) → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3731, 35, 11, 36syl3anc 1373 . . . . . . . . 9 (𝜑 → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3837ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3922, 28, 383eqtr4d 2778 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
409, 24, 33domneq0 20625 . . . . . . . 8 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) = (0g𝑅) ↔ (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
4140biimpa 476 . . . . . . 7 (((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) = (0g𝑅)) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))
428, 18, 21, 39, 41syl31anc 1375 . . . . . 6 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))
4338eqeq2d 2744 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g𝑅) ↔ 𝑥 = (0g‘(𝑅s 𝑆))))
4438eqeq2d 2744 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑦 = (0g𝑅) ↔ 𝑦 = (0g‘(𝑅s 𝑆))))
4543, 44orbi12d 918 . . . . . 6 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4642, 45mpbid 232 . . . . 5 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆))))
4746ex 412 . . . 4 (((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) → ((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4847anasss 466 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝑅s 𝑆)) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆)))) → ((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4948ralrimivva 3176 . 2 (𝜑 → ∀𝑥 ∈ (Base‘(𝑅s 𝑆))∀𝑦 ∈ (Base‘(𝑅s 𝑆))((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
50 eqid 2733 . . 3 (Base‘(𝑅s 𝑆)) = (Base‘(𝑅s 𝑆))
51 eqid 2733 . . 3 (.r‘(𝑅s 𝑆)) = (.r‘(𝑅s 𝑆))
52 eqid 2733 . . 3 (0g‘(𝑅s 𝑆)) = (0g‘(𝑅s 𝑆))
5350, 51, 52isdomn 20622 . 2 ((𝑅s 𝑆) ∈ Domn ↔ ((𝑅s 𝑆) ∈ NzRing ∧ ∀𝑥 ∈ (Base‘(𝑅s 𝑆))∀𝑦 ∈ (Base‘(𝑅s 𝑆))((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆))))))
547, 49, 53sylanbrc 583 1 (𝜑 → (𝑅s 𝑆) ∈ Domn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  .rcmulr 17164  0gc0g 17345  Mndcmnd 18644  SubGrpcsubg 19035  Ringcrg 20153  NzRingcnzr 20429  SubRingcsubrg 20486  Domncdomn 20609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-subg 19038  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-nzr 20430  df-subrg 20487  df-domn 20612
This theorem is referenced by:  subridom  33259
  Copyright terms: Public domain W3C validator