Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrdom Structured version   Visualization version   GIF version

Theorem subrdom 33246
Description: A subring of a domain is a domain. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
subrdom.1 (𝜑𝑅 ∈ Domn)
subrdom.2 (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
subrdom (𝜑 → (𝑅s 𝑆) ∈ Domn)

Proof of Theorem subrdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrdom.1 . . . 4 (𝜑𝑅 ∈ Domn)
2 domnnzr 20619 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ NzRing)
4 subrdom.2 . . 3 (𝜑𝑆 ∈ (SubRing‘𝑅))
5 eqid 2731 . . . 4 (𝑅s 𝑆) = (𝑅s 𝑆)
65subrgnzr 20507 . . 3 ((𝑅 ∈ NzRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → (𝑅s 𝑆) ∈ NzRing)
73, 4, 6syl2anc 584 . 2 (𝜑 → (𝑅s 𝑆) ∈ NzRing)
81ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑅 ∈ Domn)
9 eqid 2731 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
109subrgss 20485 . . . . . . . . . 10 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
114, 10syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ (Base‘𝑅))
1211ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑆 ⊆ (Base‘𝑅))
13 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥 ∈ (Base‘(𝑅s 𝑆)))
145, 9ressbas2 17146 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘(𝑅s 𝑆)))
1511, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 = (Base‘(𝑅s 𝑆)))
1615ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑆 = (Base‘(𝑅s 𝑆)))
1713, 16eleqtrrd 2834 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥𝑆)
1812, 17sseldd 3935 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥 ∈ (Base‘𝑅))
19 simplr 768 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦 ∈ (Base‘(𝑅s 𝑆)))
2019, 16eleqtrrd 2834 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦𝑆)
2112, 20sseldd 3935 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦 ∈ (Base‘𝑅))
22 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)))
234elexd 3460 . . . . . . . . . . 11 (𝜑𝑆 ∈ V)
24 eqid 2731 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
255, 24ressmulr 17208 . . . . . . . . . . 11 (𝑆 ∈ V → (.r𝑅) = (.r‘(𝑅s 𝑆)))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → (.r𝑅) = (.r‘(𝑅s 𝑆)))
2726oveqd 7363 . . . . . . . . 9 (𝜑 → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(𝑅s 𝑆))𝑦))
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(𝑅s 𝑆))𝑦))
29 subrgrcl 20489 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
30 ringmnd 20159 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
314, 29, 303syl 18 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
32 subrgsubg 20490 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ∈ (SubGrp‘𝑅))
33 eqid 2731 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
3433subg0cl 19044 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑆)
354, 32, 343syl 18 . . . . . . . . . 10 (𝜑 → (0g𝑅) ∈ 𝑆)
365, 9, 33ress0g 18667 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ 𝑆𝑆 ⊆ (Base‘𝑅)) → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3731, 35, 11, 36syl3anc 1373 . . . . . . . . 9 (𝜑 → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3837ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3922, 28, 383eqtr4d 2776 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
409, 24, 33domneq0 20621 . . . . . . . 8 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) = (0g𝑅) ↔ (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
4140biimpa 476 . . . . . . 7 (((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) = (0g𝑅)) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))
428, 18, 21, 39, 41syl31anc 1375 . . . . . 6 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))
4338eqeq2d 2742 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g𝑅) ↔ 𝑥 = (0g‘(𝑅s 𝑆))))
4438eqeq2d 2742 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑦 = (0g𝑅) ↔ 𝑦 = (0g‘(𝑅s 𝑆))))
4543, 44orbi12d 918 . . . . . 6 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4642, 45mpbid 232 . . . . 5 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆))))
4746ex 412 . . . 4 (((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) → ((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4847anasss 466 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝑅s 𝑆)) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆)))) → ((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4948ralrimivva 3175 . 2 (𝜑 → ∀𝑥 ∈ (Base‘(𝑅s 𝑆))∀𝑦 ∈ (Base‘(𝑅s 𝑆))((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
50 eqid 2731 . . 3 (Base‘(𝑅s 𝑆)) = (Base‘(𝑅s 𝑆))
51 eqid 2731 . . 3 (.r‘(𝑅s 𝑆)) = (.r‘(𝑅s 𝑆))
52 eqid 2731 . . 3 (0g‘(𝑅s 𝑆)) = (0g‘(𝑅s 𝑆))
5350, 51, 52isdomn 20618 . 2 ((𝑅s 𝑆) ∈ Domn ↔ ((𝑅s 𝑆) ∈ NzRing ∧ ∀𝑥 ∈ (Base‘(𝑅s 𝑆))∀𝑦 ∈ (Base‘(𝑅s 𝑆))((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆))))))
547, 49, 53sylanbrc 583 1 (𝜑 → (𝑅s 𝑆) ∈ Domn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3902  cfv 6481  (class class class)co 7346  Basecbs 17117  s cress 17138  .rcmulr 17159  0gc0g 17340  Mndcmnd 18639  SubGrpcsubg 19030  Ringcrg 20149  NzRingcnzr 20425  SubRingcsubrg 20482  Domncdomn 20605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-subg 19033  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-nzr 20426  df-subrg 20483  df-domn 20608
This theorem is referenced by:  subridom  33247
  Copyright terms: Public domain W3C validator