Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrdom Structured version   Visualization version   GIF version

Theorem subrdom 33279
Description: A subring of a domain is a domain. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
subrdom.1 (𝜑𝑅 ∈ Domn)
subrdom.2 (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
subrdom (𝜑 → (𝑅s 𝑆) ∈ Domn)

Proof of Theorem subrdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrdom.1 . . . 4 (𝜑𝑅 ∈ Domn)
2 domnnzr 20666 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ NzRing)
4 subrdom.2 . . 3 (𝜑𝑆 ∈ (SubRing‘𝑅))
5 eqid 2735 . . . 4 (𝑅s 𝑆) = (𝑅s 𝑆)
65subrgnzr 20554 . . 3 ((𝑅 ∈ NzRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → (𝑅s 𝑆) ∈ NzRing)
73, 4, 6syl2anc 584 . 2 (𝜑 → (𝑅s 𝑆) ∈ NzRing)
81ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑅 ∈ Domn)
9 eqid 2735 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
109subrgss 20532 . . . . . . . . . 10 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
114, 10syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ (Base‘𝑅))
1211ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑆 ⊆ (Base‘𝑅))
13 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥 ∈ (Base‘(𝑅s 𝑆)))
145, 9ressbas2 17259 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘(𝑅s 𝑆)))
1511, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 = (Base‘(𝑅s 𝑆)))
1615ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑆 = (Base‘(𝑅s 𝑆)))
1713, 16eleqtrrd 2837 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥𝑆)
1812, 17sseldd 3959 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥 ∈ (Base‘𝑅))
19 simplr 768 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦 ∈ (Base‘(𝑅s 𝑆)))
2019, 16eleqtrrd 2837 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦𝑆)
2112, 20sseldd 3959 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦 ∈ (Base‘𝑅))
22 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)))
234elexd 3483 . . . . . . . . . . 11 (𝜑𝑆 ∈ V)
24 eqid 2735 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
255, 24ressmulr 17321 . . . . . . . . . . 11 (𝑆 ∈ V → (.r𝑅) = (.r‘(𝑅s 𝑆)))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → (.r𝑅) = (.r‘(𝑅s 𝑆)))
2726oveqd 7422 . . . . . . . . 9 (𝜑 → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(𝑅s 𝑆))𝑦))
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(𝑅s 𝑆))𝑦))
29 subrgrcl 20536 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
30 ringmnd 20203 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
314, 29, 303syl 18 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
32 subrgsubg 20537 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ∈ (SubGrp‘𝑅))
33 eqid 2735 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
3433subg0cl 19117 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑆)
354, 32, 343syl 18 . . . . . . . . . 10 (𝜑 → (0g𝑅) ∈ 𝑆)
365, 9, 33ress0g 18740 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ 𝑆𝑆 ⊆ (Base‘𝑅)) → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3731, 35, 11, 36syl3anc 1373 . . . . . . . . 9 (𝜑 → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3837ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3922, 28, 383eqtr4d 2780 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
409, 24, 33domneq0 20668 . . . . . . . 8 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) = (0g𝑅) ↔ (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
4140biimpa 476 . . . . . . 7 (((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) = (0g𝑅)) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))
428, 18, 21, 39, 41syl31anc 1375 . . . . . 6 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))
4338eqeq2d 2746 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g𝑅) ↔ 𝑥 = (0g‘(𝑅s 𝑆))))
4438eqeq2d 2746 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑦 = (0g𝑅) ↔ 𝑦 = (0g‘(𝑅s 𝑆))))
4543, 44orbi12d 918 . . . . . 6 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4642, 45mpbid 232 . . . . 5 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆))))
4746ex 412 . . . 4 (((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) → ((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4847anasss 466 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝑅s 𝑆)) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆)))) → ((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4948ralrimivva 3187 . 2 (𝜑 → ∀𝑥 ∈ (Base‘(𝑅s 𝑆))∀𝑦 ∈ (Base‘(𝑅s 𝑆))((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
50 eqid 2735 . . 3 (Base‘(𝑅s 𝑆)) = (Base‘(𝑅s 𝑆))
51 eqid 2735 . . 3 (.r‘(𝑅s 𝑆)) = (.r‘(𝑅s 𝑆))
52 eqid 2735 . . 3 (0g‘(𝑅s 𝑆)) = (0g‘(𝑅s 𝑆))
5350, 51, 52isdomn 20665 . 2 ((𝑅s 𝑆) ∈ Domn ↔ ((𝑅s 𝑆) ∈ NzRing ∧ ∀𝑥 ∈ (Base‘(𝑅s 𝑆))∀𝑦 ∈ (Base‘(𝑅s 𝑆))((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆))))))
547, 49, 53sylanbrc 583 1 (𝜑 → (𝑅s 𝑆) ∈ Domn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  .rcmulr 17272  0gc0g 17453  Mndcmnd 18712  SubGrpcsubg 19103  Ringcrg 20193  NzRingcnzr 20472  SubRingcsubrg 20529  Domncdomn 20652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-nzr 20473  df-subrg 20530  df-domn 20655
This theorem is referenced by:  subridom  33280
  Copyright terms: Public domain W3C validator