Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrdom Structured version   Visualization version   GIF version

Theorem subrdom 33234
Description: A subring of a domain is a domain. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
subrdom.1 (𝜑𝑅 ∈ Domn)
subrdom.2 (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
subrdom (𝜑 → (𝑅s 𝑆) ∈ Domn)

Proof of Theorem subrdom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrdom.1 . . . 4 (𝜑𝑅 ∈ Domn)
2 domnnzr 20609 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ NzRing)
4 subrdom.2 . . 3 (𝜑𝑆 ∈ (SubRing‘𝑅))
5 eqid 2729 . . . 4 (𝑅s 𝑆) = (𝑅s 𝑆)
65subrgnzr 20497 . . 3 ((𝑅 ∈ NzRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → (𝑅s 𝑆) ∈ NzRing)
73, 4, 6syl2anc 584 . 2 (𝜑 → (𝑅s 𝑆) ∈ NzRing)
81ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑅 ∈ Domn)
9 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
109subrgss 20475 . . . . . . . . . 10 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
114, 10syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ (Base‘𝑅))
1211ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑆 ⊆ (Base‘𝑅))
13 simpllr 775 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥 ∈ (Base‘(𝑅s 𝑆)))
145, 9ressbas2 17167 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑅) → 𝑆 = (Base‘(𝑅s 𝑆)))
1511, 14syl 17 . . . . . . . . . 10 (𝜑𝑆 = (Base‘(𝑅s 𝑆)))
1615ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑆 = (Base‘(𝑅s 𝑆)))
1713, 16eleqtrrd 2831 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥𝑆)
1812, 17sseldd 3938 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑥 ∈ (Base‘𝑅))
19 simplr 768 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦 ∈ (Base‘(𝑅s 𝑆)))
2019, 16eleqtrrd 2831 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦𝑆)
2112, 20sseldd 3938 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → 𝑦 ∈ (Base‘𝑅))
22 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)))
234elexd 3462 . . . . . . . . . . 11 (𝜑𝑆 ∈ V)
24 eqid 2729 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
255, 24ressmulr 17229 . . . . . . . . . . 11 (𝑆 ∈ V → (.r𝑅) = (.r‘(𝑅s 𝑆)))
2623, 25syl 17 . . . . . . . . . 10 (𝜑 → (.r𝑅) = (.r‘(𝑅s 𝑆)))
2726oveqd 7370 . . . . . . . . 9 (𝜑 → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(𝑅s 𝑆))𝑦))
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(𝑅s 𝑆))𝑦))
29 subrgrcl 20479 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
30 ringmnd 20146 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
314, 29, 303syl 18 . . . . . . . . . 10 (𝜑𝑅 ∈ Mnd)
32 subrgsubg 20480 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ∈ (SubGrp‘𝑅))
33 eqid 2729 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
3433subg0cl 19031 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑆)
354, 32, 343syl 18 . . . . . . . . . 10 (𝜑 → (0g𝑅) ∈ 𝑆)
365, 9, 33ress0g 18654 . . . . . . . . . 10 ((𝑅 ∈ Mnd ∧ (0g𝑅) ∈ 𝑆𝑆 ⊆ (Base‘𝑅)) → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3731, 35, 11, 36syl3anc 1373 . . . . . . . . 9 (𝜑 → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3837ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (0g𝑅) = (0g‘(𝑅s 𝑆)))
3922, 28, 383eqtr4d 2774 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥(.r𝑅)𝑦) = (0g𝑅))
409, 24, 33domneq0 20611 . . . . . . . 8 ((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑥(.r𝑅)𝑦) = (0g𝑅) ↔ (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅))))
4140biimpa 476 . . . . . . 7 (((𝑅 ∈ Domn ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) ∧ (𝑥(.r𝑅)𝑦) = (0g𝑅)) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))
428, 18, 21, 39, 41syl31anc 1375 . . . . . 6 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)))
4338eqeq2d 2740 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g𝑅) ↔ 𝑥 = (0g‘(𝑅s 𝑆))))
4438eqeq2d 2740 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑦 = (0g𝑅) ↔ 𝑦 = (0g‘(𝑅s 𝑆))))
4543, 44orbi12d 918 . . . . . 6 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → ((𝑥 = (0g𝑅) ∨ 𝑦 = (0g𝑅)) ↔ (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4642, 45mpbid 232 . . . . 5 ((((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) ∧ (𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆))) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆))))
4746ex 412 . . . 4 (((𝜑𝑥 ∈ (Base‘(𝑅s 𝑆))) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆))) → ((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4847anasss 466 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝑅s 𝑆)) ∧ 𝑦 ∈ (Base‘(𝑅s 𝑆)))) → ((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
4948ralrimivva 3172 . 2 (𝜑 → ∀𝑥 ∈ (Base‘(𝑅s 𝑆))∀𝑦 ∈ (Base‘(𝑅s 𝑆))((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆)))))
50 eqid 2729 . . 3 (Base‘(𝑅s 𝑆)) = (Base‘(𝑅s 𝑆))
51 eqid 2729 . . 3 (.r‘(𝑅s 𝑆)) = (.r‘(𝑅s 𝑆))
52 eqid 2729 . . 3 (0g‘(𝑅s 𝑆)) = (0g‘(𝑅s 𝑆))
5350, 51, 52isdomn 20608 . 2 ((𝑅s 𝑆) ∈ Domn ↔ ((𝑅s 𝑆) ∈ NzRing ∧ ∀𝑥 ∈ (Base‘(𝑅s 𝑆))∀𝑦 ∈ (Base‘(𝑅s 𝑆))((𝑥(.r‘(𝑅s 𝑆))𝑦) = (0g‘(𝑅s 𝑆)) → (𝑥 = (0g‘(𝑅s 𝑆)) ∨ 𝑦 = (0g‘(𝑅s 𝑆))))))
547, 49, 53sylanbrc 583 1 (𝜑 → (𝑅s 𝑆) ∈ Domn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  wss 3905  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  .rcmulr 17180  0gc0g 17361  Mndcmnd 18626  SubGrpcsubg 19017  Ringcrg 20136  NzRingcnzr 20415  SubRingcsubrg 20472  Domncdomn 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-nzr 20416  df-subrg 20473  df-domn 20598
This theorem is referenced by:  subridom  33235
  Copyright terms: Public domain W3C validator