Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2f1o Structured version   Visualization version   GIF version

Theorem swapf2f1o 49247
Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 8-Oct-2025.)
Hypotheses
Ref Expression
swapf1f1o.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapf1f1o.s 𝑆 = (𝐶 ×c 𝐷)
swapf1f1o.t 𝑇 = (𝐷 ×c 𝐶)
swapf2f1o.h 𝐻 = (Hom ‘𝑆)
swapf2f1o.j 𝐽 = (Hom ‘𝑇)
swapf2f1o.x (𝜑𝑋 ∈ (Base‘𝐶))
swapf2f1o.y (𝜑𝑌 ∈ (Base‘𝐷))
swapf2f1o.z (𝜑𝑍 ∈ (Base‘𝐶))
swapf2f1o.w (𝜑𝑊 ∈ (Base‘𝐷))
Assertion
Ref Expression
swapf2f1o (𝜑 → (⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩):(⟨𝑋, 𝑌𝐻𝑍, 𝑊⟩)–1-1-onto→(⟨𝑌, 𝑋𝐽𝑊, 𝑍⟩))

Proof of Theorem swapf2f1o
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ {𝑓}) = (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ {𝑓})
21xpcomf1o 9034 . 2 (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ {𝑓}):((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊))–1-1-onto→((𝑌(Hom ‘𝐷)𝑊) × (𝑋(Hom ‘𝐶)𝑍))
3 swapf1f1o.o . . . . 5 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
4 swapf2f1o.x . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
5 swapf2f1o.y . . . . 5 (𝜑𝑌 ∈ (Base‘𝐷))
6 swapf2f1o.z . . . . 5 (𝜑𝑍 ∈ (Base‘𝐶))
7 swapf2f1o.w . . . . 5 (𝜑𝑊 ∈ (Base‘𝐷))
8 swapf1f1o.s . . . . 5 𝑆 = (𝐶 ×c 𝐷)
9 swapf2f1o.h . . . . . 6 𝐻 = (Hom ‘𝑆)
109a1i 11 . . . . 5 (𝜑𝐻 = (Hom ‘𝑆))
113, 4, 5, 6, 7, 8, 10swapf2val 49244 . . . 4 (𝜑 → (⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩) = (𝑓 ∈ (⟨𝑋, 𝑌𝐻𝑍, 𝑊⟩) ↦ {𝑓}))
12 eqid 2730 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
13 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
14 eqid 2730 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
15 eqid 2730 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
168, 12, 13, 14, 15, 4, 5, 6, 7, 9xpchom2 18153 . . . . 5 (𝜑 → (⟨𝑋, 𝑌𝐻𝑍, 𝑊⟩) = ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)))
1716mpteq1d 5199 . . . 4 (𝜑 → (𝑓 ∈ (⟨𝑋, 𝑌𝐻𝑍, 𝑊⟩) ↦ {𝑓}) = (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ {𝑓}))
1811, 17eqtrd 2765 . . 3 (𝜑 → (⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩) = (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ {𝑓}))
19 swapf1f1o.t . . . 4 𝑇 = (𝐷 ×c 𝐶)
20 swapf2f1o.j . . . 4 𝐽 = (Hom ‘𝑇)
2119, 13, 12, 15, 14, 5, 4, 7, 6, 20xpchom2 18153 . . 3 (𝜑 → (⟨𝑌, 𝑋𝐽𝑊, 𝑍⟩) = ((𝑌(Hom ‘𝐷)𝑊) × (𝑋(Hom ‘𝐶)𝑍)))
2218, 16, 21f1oeq123d 6796 . 2 (𝜑 → ((⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩):(⟨𝑋, 𝑌𝐻𝑍, 𝑊⟩)–1-1-onto→(⟨𝑌, 𝑋𝐽𝑊, 𝑍⟩) ↔ (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ {𝑓}):((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊))–1-1-onto→((𝑌(Hom ‘𝐷)𝑊) × (𝑋(Hom ‘𝐶)𝑍))))
232, 22mpbiri 258 1 (𝜑 → (⟨𝑋, 𝑌𝑃𝑍, 𝑊⟩):(⟨𝑋, 𝑌𝐻𝑍, 𝑊⟩)–1-1-onto→(⟨𝑌, 𝑋𝐽𝑊, 𝑍⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4591  cop 4597   cuni 4873  cmpt 5190   × cxp 5638  ccnv 5639  1-1-ontowf1o 6512  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237   ×c cxpc 18135   swapF cswapf 49230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-xpc 18139  df-swapf 49231
This theorem is referenced by:  swapf2f1oa  49248
  Copyright terms: Public domain W3C validator