| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2f1o | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 8-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1f1o.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
| swapf1f1o.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf1f1o.t | ⊢ 𝑇 = (𝐷 ×c 𝐶) |
| swapf2f1o.h | ⊢ 𝐻 = (Hom ‘𝑆) |
| swapf2f1o.j | ⊢ 𝐽 = (Hom ‘𝑇) |
| swapf2f1o.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| swapf2f1o.y | ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| swapf2f1o.z | ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| swapf2f1o.w | ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) |
| Ref | Expression |
|---|---|
| swapf2f1o | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉):(〈𝑋, 𝑌〉𝐻〈𝑍, 𝑊〉)–1-1-onto→(〈𝑌, 𝑋〉𝐽〈𝑊, 𝑍〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ ∪ ◡{𝑓}) = (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ ∪ ◡{𝑓}) | |
| 2 | 1 | xpcomf1o 9069 | . 2 ⊢ (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ ∪ ◡{𝑓}):((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊))–1-1-onto→((𝑌(Hom ‘𝐷)𝑊) × (𝑋(Hom ‘𝐶)𝑍)) |
| 3 | swapf1f1o.o | . . . . 5 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
| 4 | swapf2f1o.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
| 5 | swapf2f1o.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) | |
| 6 | swapf2f1o.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) | |
| 7 | swapf2f1o.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐷)) | |
| 8 | swapf1f1o.s | . . . . 5 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 9 | swapf2f1o.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝑆) | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐻 = (Hom ‘𝑆)) |
| 11 | 3, 4, 5, 6, 7, 8, 10 | swapf2val 48996 | . . . 4 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉) = (𝑓 ∈ (〈𝑋, 𝑌〉𝐻〈𝑍, 𝑊〉) ↦ ∪ ◡{𝑓})) |
| 12 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 13 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 14 | eqid 2734 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 15 | eqid 2734 | . . . . . 6 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 16 | 8, 12, 13, 14, 15, 4, 5, 6, 7, 9 | xpchom2 18183 | . . . . 5 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝐻〈𝑍, 𝑊〉) = ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊))) |
| 17 | 16 | mpteq1d 5207 | . . . 4 ⊢ (𝜑 → (𝑓 ∈ (〈𝑋, 𝑌〉𝐻〈𝑍, 𝑊〉) ↦ ∪ ◡{𝑓}) = (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ ∪ ◡{𝑓})) |
| 18 | 11, 17 | eqtrd 2769 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉) = (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ ∪ ◡{𝑓})) |
| 19 | swapf1f1o.t | . . . 4 ⊢ 𝑇 = (𝐷 ×c 𝐶) | |
| 20 | swapf2f1o.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝑇) | |
| 21 | 19, 13, 12, 15, 14, 5, 4, 7, 6, 20 | xpchom2 18183 | . . 3 ⊢ (𝜑 → (〈𝑌, 𝑋〉𝐽〈𝑊, 𝑍〉) = ((𝑌(Hom ‘𝐷)𝑊) × (𝑋(Hom ‘𝐶)𝑍))) |
| 22 | 18, 16, 21 | f1oeq123d 6808 | . 2 ⊢ (𝜑 → ((〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉):(〈𝑋, 𝑌〉𝐻〈𝑍, 𝑊〉)–1-1-onto→(〈𝑌, 𝑋〉𝐽〈𝑊, 𝑍〉) ↔ (𝑓 ∈ ((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊)) ↦ ∪ ◡{𝑓}):((𝑋(Hom ‘𝐶)𝑍) × (𝑌(Hom ‘𝐷)𝑊))–1-1-onto→((𝑌(Hom ‘𝐷)𝑊) × (𝑋(Hom ‘𝐶)𝑍)))) |
| 23 | 2, 22 | mpbiri 258 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑃〈𝑍, 𝑊〉):(〈𝑋, 𝑌〉𝐻〈𝑍, 𝑊〉)–1-1-onto→(〈𝑌, 𝑋〉𝐽〈𝑊, 𝑍〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4599 〈cop 4605 ∪ cuni 4880 ↦ cmpt 5198 × cxp 5649 ◡ccnv 5650 –1-1-onto→wf1o 6526 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 Hom chom 17267 ×c cxpc 18165 swapFcswapf 48982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-fz 13514 df-struct 17151 df-slot 17186 df-ndx 17198 df-base 17214 df-hom 17280 df-cco 17281 df-xpc 18169 df-swapf 48983 |
| This theorem is referenced by: swapf2f1oa 49000 |
| Copyright terms: Public domain | W3C validator |