Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2f1oa Structured version   Visualization version   GIF version

Theorem swapf2f1oa 49309
Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
swapf1f1o.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapf1f1o.s 𝑆 = (𝐶 ×c 𝐷)
swapf1f1o.t 𝑇 = (𝐷 ×c 𝐶)
swapf2f1o.h 𝐻 = (Hom ‘𝑆)
swapf2f1o.j 𝐽 = (Hom ‘𝑇)
swapf2f1oa.b 𝐵 = (Base‘𝑆)
swapf2f1oa.x (𝜑𝑋𝐵)
swapf2f1oa.y (𝜑𝑌𝐵)
Assertion
Ref Expression
swapf2f1oa (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))

Proof of Theorem swapf2f1oa
StepHypRef Expression
1 swapf1f1o.o . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
2 swapf1f1o.s . . 3 𝑆 = (𝐶 ×c 𝐷)
3 swapf1f1o.t . . 3 𝑇 = (𝐷 ×c 𝐶)
4 swapf2f1o.h . . 3 𝐻 = (Hom ‘𝑆)
5 swapf2f1o.j . . 3 𝐽 = (Hom ‘𝑇)
6 swapf2f1oa.x . . . . 5 (𝜑𝑋𝐵)
7 swapf2f1oa.b . . . . . 6 𝐵 = (Base‘𝑆)
8 eqid 2731 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2731 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
102, 8, 9xpcbas 18079 . . . . . 6 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑆)
117, 10eqtr4i 2757 . . . . 5 𝐵 = ((Base‘𝐶) × (Base‘𝐷))
126, 11eleqtrdi 2841 . . . 4 (𝜑𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)))
13 xp1st 7948 . . . 4 (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st𝑋) ∈ (Base‘𝐶))
1412, 13syl 17 . . 3 (𝜑 → (1st𝑋) ∈ (Base‘𝐶))
15 xp2nd 7949 . . . 4 (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd𝑋) ∈ (Base‘𝐷))
1612, 15syl 17 . . 3 (𝜑 → (2nd𝑋) ∈ (Base‘𝐷))
17 swapf2f1oa.y . . . . 5 (𝜑𝑌𝐵)
1817, 11eleqtrdi 2841 . . . 4 (𝜑𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)))
19 xp1st 7948 . . . 4 (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st𝑌) ∈ (Base‘𝐶))
2018, 19syl 17 . . 3 (𝜑 → (1st𝑌) ∈ (Base‘𝐶))
21 xp2nd 7949 . . . 4 (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd𝑌) ∈ (Base‘𝐷))
2218, 21syl 17 . . 3 (𝜑 → (2nd𝑌) ∈ (Base‘𝐷))
231, 2, 3, 4, 5, 14, 16, 20, 22swapf2f1o 49308 . 2 (𝜑 → (⟨(1st𝑋), (2nd𝑋)⟩𝑃⟨(1st𝑌), (2nd𝑌)⟩):(⟨(1st𝑋), (2nd𝑋)⟩𝐻⟨(1st𝑌), (2nd𝑌)⟩)–1-1-onto→(⟨(2nd𝑋), (1st𝑋)⟩𝐽⟨(2nd𝑌), (1st𝑌)⟩))
24 1st2nd2 7955 . . . . 5 (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2512, 24syl 17 . . . 4 (𝜑𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
26 1st2nd2 7955 . . . . 5 (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
2718, 26syl 17 . . . 4 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
2825, 27oveq12d 7359 . . 3 (𝜑 → (𝑋𝑃𝑌) = (⟨(1st𝑋), (2nd𝑋)⟩𝑃⟨(1st𝑌), (2nd𝑌)⟩))
2925, 27oveq12d 7359 . . 3 (𝜑 → (𝑋𝐻𝑌) = (⟨(1st𝑋), (2nd𝑋)⟩𝐻⟨(1st𝑌), (2nd𝑌)⟩))
301, 2, 7, 6swapf1a 49301 . . . 4 (𝜑 → (𝑂𝑋) = ⟨(2nd𝑋), (1st𝑋)⟩)
311, 2, 7, 17swapf1a 49301 . . . 4 (𝜑 → (𝑂𝑌) = ⟨(2nd𝑌), (1st𝑌)⟩)
3230, 31oveq12d 7359 . . 3 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (⟨(2nd𝑋), (1st𝑋)⟩𝐽⟨(2nd𝑌), (1st𝑌)⟩))
3328, 29, 32f1oeq123d 6752 . 2 (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)) ↔ (⟨(1st𝑋), (2nd𝑋)⟩𝑃⟨(1st𝑌), (2nd𝑌)⟩):(⟨(1st𝑋), (2nd𝑋)⟩𝐻⟨(1st𝑌), (2nd𝑌)⟩)–1-1-onto→(⟨(2nd𝑋), (1st𝑋)⟩𝐽⟨(2nd𝑌), (1st𝑌)⟩)))
3423, 33mpbird 257 1 (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cop 4577   × cxp 5609  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  Hom chom 17167   ×c cxpc 18069   swapF cswapf 49291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-xpc 18073  df-swapf 49292
This theorem is referenced by:  swapfcoa  49313  swapffunc  49314  swapfffth  49315
  Copyright terms: Public domain W3C validator