![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2f1oa | Structured version Visualization version GIF version |
Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 9-Oct-2025.) |
Ref | Expression |
---|---|
swapf1f1o.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
swapf1f1o.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
swapf1f1o.t | ⊢ 𝑇 = (𝐷 ×c 𝐶) |
swapf2f1o.h | ⊢ 𝐻 = (Hom ‘𝑆) |
swapf2f1o.j | ⊢ 𝐽 = (Hom ‘𝑇) |
swapf2f1oa.b | ⊢ 𝐵 = (Base‘𝑆) |
swapf2f1oa.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
swapf2f1oa.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
swapf2f1oa | ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swapf1f1o.o | . . 3 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
2 | swapf1f1o.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
3 | swapf1f1o.t | . . 3 ⊢ 𝑇 = (𝐷 ×c 𝐶) | |
4 | swapf2f1o.h | . . 3 ⊢ 𝐻 = (Hom ‘𝑆) | |
5 | swapf2f1o.j | . . 3 ⊢ 𝐽 = (Hom ‘𝑇) | |
6 | swapf2f1oa.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | swapf2f1oa.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
8 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
10 | 2, 8, 9 | xpcbas 18219 | . . . . . 6 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑆) |
11 | 7, 10 | eqtr4i 2767 | . . . . 5 ⊢ 𝐵 = ((Base‘𝐶) × (Base‘𝐷)) |
12 | 6, 11 | eleqtrdi 2850 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
13 | xp1st 8042 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st ‘𝑋) ∈ (Base‘𝐶)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑋) ∈ (Base‘𝐶)) |
15 | xp2nd 8043 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd ‘𝑋) ∈ (Base‘𝐷)) | |
16 | 12, 15 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘𝑋) ∈ (Base‘𝐷)) |
17 | swapf2f1oa.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
18 | 17, 11 | eleqtrdi 2850 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
19 | xp1st 8042 | . . . 4 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st ‘𝑌) ∈ (Base‘𝐶)) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑌) ∈ (Base‘𝐶)) |
21 | xp2nd 8043 | . . . 4 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd ‘𝑌) ∈ (Base‘𝐷)) | |
22 | 18, 21 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘𝑌) ∈ (Base‘𝐷)) |
23 | 1, 2, 3, 4, 5, 14, 16, 20, 22 | swapf2f1o 48955 | . 2 ⊢ (𝜑 → (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉):(〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)–1-1-onto→(〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉)) |
24 | 1st2nd2 8049 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
25 | 12, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
26 | 1st2nd2 8049 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) | |
27 | 18, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
28 | 25, 27 | oveq12d 7447 | . . 3 ⊢ (𝜑 → (𝑋𝑃𝑌) = (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉)) |
29 | 25, 27 | oveq12d 7447 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)) |
30 | 1, 2, 7, 6 | swapf1a 48948 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = 〈(2nd ‘𝑋), (1st ‘𝑋)〉) |
31 | 1, 2, 7, 17 | swapf1a 48948 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑌) = 〈(2nd ‘𝑌), (1st ‘𝑌)〉) |
32 | 30, 31 | oveq12d 7447 | . . 3 ⊢ (𝜑 → ((𝑂‘𝑋)𝐽(𝑂‘𝑌)) = (〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉)) |
33 | 28, 29, 32 | f1oeq123d 6840 | . 2 ⊢ (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌)) ↔ (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉):(〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)–1-1-onto→(〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉))) |
34 | 23, 33 | mpbird 257 | 1 ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 〈cop 4630 × cxp 5681 –1-1-onto→wf1o 6558 ‘cfv 6559 (class class class)co 7429 1st c1st 8008 2nd c2nd 8009 Basecbs 17243 Hom chom 17304 ×c cxpc 18209 swapFcswapf 48938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-er 8741 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17244 df-hom 17317 df-cco 17318 df-xpc 18213 df-swapf 48939 |
This theorem is referenced by: swapfcoa 48960 swapffunc 48961 swapfffth 48962 |
Copyright terms: Public domain | W3C validator |