Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swapf2f1oa Structured version   Visualization version   GIF version

Theorem swapf2f1oa 49248
Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 9-Oct-2025.)
Hypotheses
Ref Expression
swapf1f1o.o (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
swapf1f1o.s 𝑆 = (𝐶 ×c 𝐷)
swapf1f1o.t 𝑇 = (𝐷 ×c 𝐶)
swapf2f1o.h 𝐻 = (Hom ‘𝑆)
swapf2f1o.j 𝐽 = (Hom ‘𝑇)
swapf2f1oa.b 𝐵 = (Base‘𝑆)
swapf2f1oa.x (𝜑𝑋𝐵)
swapf2f1oa.y (𝜑𝑌𝐵)
Assertion
Ref Expression
swapf2f1oa (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))

Proof of Theorem swapf2f1oa
StepHypRef Expression
1 swapf1f1o.o . . 3 (𝜑 → (𝐶 swapF 𝐷) = ⟨𝑂, 𝑃⟩)
2 swapf1f1o.s . . 3 𝑆 = (𝐶 ×c 𝐷)
3 swapf1f1o.t . . 3 𝑇 = (𝐷 ×c 𝐶)
4 swapf2f1o.h . . 3 𝐻 = (Hom ‘𝑆)
5 swapf2f1o.j . . 3 𝐽 = (Hom ‘𝑇)
6 swapf2f1oa.x . . . . 5 (𝜑𝑋𝐵)
7 swapf2f1oa.b . . . . . 6 𝐵 = (Base‘𝑆)
8 eqid 2730 . . . . . . 7 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2730 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
102, 8, 9xpcbas 18145 . . . . . 6 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑆)
117, 10eqtr4i 2756 . . . . 5 𝐵 = ((Base‘𝐶) × (Base‘𝐷))
126, 11eleqtrdi 2839 . . . 4 (𝜑𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)))
13 xp1st 8002 . . . 4 (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st𝑋) ∈ (Base‘𝐶))
1412, 13syl 17 . . 3 (𝜑 → (1st𝑋) ∈ (Base‘𝐶))
15 xp2nd 8003 . . . 4 (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd𝑋) ∈ (Base‘𝐷))
1612, 15syl 17 . . 3 (𝜑 → (2nd𝑋) ∈ (Base‘𝐷))
17 swapf2f1oa.y . . . . 5 (𝜑𝑌𝐵)
1817, 11eleqtrdi 2839 . . . 4 (𝜑𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)))
19 xp1st 8002 . . . 4 (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st𝑌) ∈ (Base‘𝐶))
2018, 19syl 17 . . 3 (𝜑 → (1st𝑌) ∈ (Base‘𝐶))
21 xp2nd 8003 . . . 4 (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd𝑌) ∈ (Base‘𝐷))
2218, 21syl 17 . . 3 (𝜑 → (2nd𝑌) ∈ (Base‘𝐷))
231, 2, 3, 4, 5, 14, 16, 20, 22swapf2f1o 49247 . 2 (𝜑 → (⟨(1st𝑋), (2nd𝑋)⟩𝑃⟨(1st𝑌), (2nd𝑌)⟩):(⟨(1st𝑋), (2nd𝑋)⟩𝐻⟨(1st𝑌), (2nd𝑌)⟩)–1-1-onto→(⟨(2nd𝑋), (1st𝑋)⟩𝐽⟨(2nd𝑌), (1st𝑌)⟩))
24 1st2nd2 8009 . . . . 5 (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2512, 24syl 17 . . . 4 (𝜑𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
26 1st2nd2 8009 . . . . 5 (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
2718, 26syl 17 . . . 4 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
2825, 27oveq12d 7407 . . 3 (𝜑 → (𝑋𝑃𝑌) = (⟨(1st𝑋), (2nd𝑋)⟩𝑃⟨(1st𝑌), (2nd𝑌)⟩))
2925, 27oveq12d 7407 . . 3 (𝜑 → (𝑋𝐻𝑌) = (⟨(1st𝑋), (2nd𝑋)⟩𝐻⟨(1st𝑌), (2nd𝑌)⟩))
301, 2, 7, 6swapf1a 49240 . . . 4 (𝜑 → (𝑂𝑋) = ⟨(2nd𝑋), (1st𝑋)⟩)
311, 2, 7, 17swapf1a 49240 . . . 4 (𝜑 → (𝑂𝑌) = ⟨(2nd𝑌), (1st𝑌)⟩)
3230, 31oveq12d 7407 . . 3 (𝜑 → ((𝑂𝑋)𝐽(𝑂𝑌)) = (⟨(2nd𝑋), (1st𝑋)⟩𝐽⟨(2nd𝑌), (1st𝑌)⟩))
3328, 29, 32f1oeq123d 6796 . 2 (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)) ↔ (⟨(1st𝑋), (2nd𝑋)⟩𝑃⟨(1st𝑌), (2nd𝑌)⟩):(⟨(1st𝑋), (2nd𝑋)⟩𝐻⟨(1st𝑌), (2nd𝑌)⟩)–1-1-onto→(⟨(2nd𝑋), (1st𝑋)⟩𝐽⟨(2nd𝑌), (1st𝑌)⟩)))
3423, 33mpbird 257 1 (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂𝑋)𝐽(𝑂𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4597   × cxp 5638  1-1-ontowf1o 6512  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  Hom chom 17237   ×c cxpc 18135   swapF cswapf 49230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-xpc 18139  df-swapf 49231
This theorem is referenced by:  swapfcoa  49252  swapffunc  49253  swapfffth  49254
  Copyright terms: Public domain W3C validator