| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2f1oa | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1f1o.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| swapf1f1o.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf1f1o.t | ⊢ 𝑇 = (𝐷 ×c 𝐶) |
| swapf2f1o.h | ⊢ 𝐻 = (Hom ‘𝑆) |
| swapf2f1o.j | ⊢ 𝐽 = (Hom ‘𝑇) |
| swapf2f1oa.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf2f1oa.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| swapf2f1oa.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| swapf2f1oa | ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapf1f1o.o | . . 3 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 2 | swapf1f1o.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 3 | swapf1f1o.t | . . 3 ⊢ 𝑇 = (𝐷 ×c 𝐶) | |
| 4 | swapf2f1o.h | . . 3 ⊢ 𝐻 = (Hom ‘𝑆) | |
| 5 | swapf2f1o.j | . . 3 ⊢ 𝐽 = (Hom ‘𝑇) | |
| 6 | swapf2f1oa.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | swapf2f1oa.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 8 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 10 | 2, 8, 9 | xpcbas 18145 | . . . . . 6 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑆) |
| 11 | 7, 10 | eqtr4i 2756 | . . . . 5 ⊢ 𝐵 = ((Base‘𝐶) × (Base‘𝐷)) |
| 12 | 6, 11 | eleqtrdi 2839 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
| 13 | xp1st 8002 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st ‘𝑋) ∈ (Base‘𝐶)) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑋) ∈ (Base‘𝐶)) |
| 15 | xp2nd 8003 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd ‘𝑋) ∈ (Base‘𝐷)) | |
| 16 | 12, 15 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘𝑋) ∈ (Base‘𝐷)) |
| 17 | swapf2f1oa.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 18 | 17, 11 | eleqtrdi 2839 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
| 19 | xp1st 8002 | . . . 4 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st ‘𝑌) ∈ (Base‘𝐶)) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑌) ∈ (Base‘𝐶)) |
| 21 | xp2nd 8003 | . . . 4 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd ‘𝑌) ∈ (Base‘𝐷)) | |
| 22 | 18, 21 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘𝑌) ∈ (Base‘𝐷)) |
| 23 | 1, 2, 3, 4, 5, 14, 16, 20, 22 | swapf2f1o 49247 | . 2 ⊢ (𝜑 → (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉):(〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)–1-1-onto→(〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉)) |
| 24 | 1st2nd2 8009 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 25 | 12, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 26 | 1st2nd2 8009 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) | |
| 27 | 18, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
| 28 | 25, 27 | oveq12d 7407 | . . 3 ⊢ (𝜑 → (𝑋𝑃𝑌) = (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉)) |
| 29 | 25, 27 | oveq12d 7407 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)) |
| 30 | 1, 2, 7, 6 | swapf1a 49240 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = 〈(2nd ‘𝑋), (1st ‘𝑋)〉) |
| 31 | 1, 2, 7, 17 | swapf1a 49240 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑌) = 〈(2nd ‘𝑌), (1st ‘𝑌)〉) |
| 32 | 30, 31 | oveq12d 7407 | . . 3 ⊢ (𝜑 → ((𝑂‘𝑋)𝐽(𝑂‘𝑌)) = (〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉)) |
| 33 | 28, 29, 32 | f1oeq123d 6796 | . 2 ⊢ (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌)) ↔ (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉):(〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)–1-1-onto→(〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉))) |
| 34 | 23, 33 | mpbird 257 | 1 ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4597 × cxp 5638 –1-1-onto→wf1o 6512 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 Basecbs 17185 Hom chom 17237 ×c cxpc 18135 swapF cswapf 49230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-xpc 18139 df-swapf 49231 |
| This theorem is referenced by: swapfcoa 49252 swapffunc 49253 swapfffth 49254 |
| Copyright terms: Public domain | W3C validator |