| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2f1oa | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1f1o.o | ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) |
| swapf1f1o.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf1f1o.t | ⊢ 𝑇 = (𝐷 ×c 𝐶) |
| swapf2f1o.h | ⊢ 𝐻 = (Hom ‘𝑆) |
| swapf2f1o.j | ⊢ 𝐽 = (Hom ‘𝑇) |
| swapf2f1oa.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf2f1oa.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| swapf2f1oa.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| swapf2f1oa | ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapf1f1o.o | . . 3 ⊢ (𝜑 → (𝐶swapF𝐷) = 〈𝑂, 𝑃〉) | |
| 2 | swapf1f1o.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 3 | swapf1f1o.t | . . 3 ⊢ 𝑇 = (𝐷 ×c 𝐶) | |
| 4 | swapf2f1o.h | . . 3 ⊢ 𝐻 = (Hom ‘𝑆) | |
| 5 | swapf2f1o.j | . . 3 ⊢ 𝐽 = (Hom ‘𝑇) | |
| 6 | swapf2f1oa.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | swapf2f1oa.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 8 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 10 | 2, 8, 9 | xpcbas 18194 | . . . . . 6 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑆) |
| 11 | 7, 10 | eqtr4i 2760 | . . . . 5 ⊢ 𝐵 = ((Base‘𝐶) × (Base‘𝐷)) |
| 12 | 6, 11 | eleqtrdi 2843 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
| 13 | xp1st 8028 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st ‘𝑋) ∈ (Base‘𝐶)) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑋) ∈ (Base‘𝐶)) |
| 15 | xp2nd 8029 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd ‘𝑋) ∈ (Base‘𝐷)) | |
| 16 | 12, 15 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘𝑋) ∈ (Base‘𝐷)) |
| 17 | swapf2f1oa.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 18 | 17, 11 | eleqtrdi 2843 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
| 19 | xp1st 8028 | . . . 4 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st ‘𝑌) ∈ (Base‘𝐶)) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑌) ∈ (Base‘𝐶)) |
| 21 | xp2nd 8029 | . . . 4 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd ‘𝑌) ∈ (Base‘𝐷)) | |
| 22 | 18, 21 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘𝑌) ∈ (Base‘𝐷)) |
| 23 | 1, 2, 3, 4, 5, 14, 16, 20, 22 | swapf2f1o 49027 | . 2 ⊢ (𝜑 → (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉):(〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)–1-1-onto→(〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉)) |
| 24 | 1st2nd2 8035 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 25 | 12, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 26 | 1st2nd2 8035 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) | |
| 27 | 18, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
| 28 | 25, 27 | oveq12d 7431 | . . 3 ⊢ (𝜑 → (𝑋𝑃𝑌) = (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉)) |
| 29 | 25, 27 | oveq12d 7431 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)) |
| 30 | 1, 2, 7, 6 | swapf1a 49020 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = 〈(2nd ‘𝑋), (1st ‘𝑋)〉) |
| 31 | 1, 2, 7, 17 | swapf1a 49020 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑌) = 〈(2nd ‘𝑌), (1st ‘𝑌)〉) |
| 32 | 30, 31 | oveq12d 7431 | . . 3 ⊢ (𝜑 → ((𝑂‘𝑋)𝐽(𝑂‘𝑌)) = (〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉)) |
| 33 | 28, 29, 32 | f1oeq123d 6822 | . 2 ⊢ (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌)) ↔ (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉):(〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)–1-1-onto→(〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉))) |
| 34 | 23, 33 | mpbird 257 | 1 ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4612 × cxp 5663 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 2nd c2nd 7995 Basecbs 17230 Hom chom 17285 ×c cxpc 18184 swapFcswapf 49010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17298 df-cco 17299 df-xpc 18188 df-swapf 49011 |
| This theorem is referenced by: swapfcoa 49032 swapffunc 49033 swapfffth 49034 |
| Copyright terms: Public domain | W3C validator |