| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swapf2f1oa | Structured version Visualization version GIF version | ||
| Description: The morphism part of the swap functor is a bijection between hom-sets. (Contributed by Zhi Wang, 9-Oct-2025.) |
| Ref | Expression |
|---|---|
| swapf1f1o.o | ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) |
| swapf1f1o.s | ⊢ 𝑆 = (𝐶 ×c 𝐷) |
| swapf1f1o.t | ⊢ 𝑇 = (𝐷 ×c 𝐶) |
| swapf2f1o.h | ⊢ 𝐻 = (Hom ‘𝑆) |
| swapf2f1o.j | ⊢ 𝐽 = (Hom ‘𝑇) |
| swapf2f1oa.b | ⊢ 𝐵 = (Base‘𝑆) |
| swapf2f1oa.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| swapf2f1oa.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| swapf2f1oa | ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swapf1f1o.o | . . 3 ⊢ (𝜑 → (𝐶 swapF 𝐷) = 〈𝑂, 𝑃〉) | |
| 2 | swapf1f1o.s | . . 3 ⊢ 𝑆 = (𝐶 ×c 𝐷) | |
| 3 | swapf1f1o.t | . . 3 ⊢ 𝑇 = (𝐷 ×c 𝐶) | |
| 4 | swapf2f1o.h | . . 3 ⊢ 𝐻 = (Hom ‘𝑆) | |
| 5 | swapf2f1o.j | . . 3 ⊢ 𝐽 = (Hom ‘𝑇) | |
| 6 | swapf2f1oa.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | swapf2f1oa.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 8 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 10 | 2, 8, 9 | xpcbas 18079 | . . . . . 6 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑆) |
| 11 | 7, 10 | eqtr4i 2757 | . . . . 5 ⊢ 𝐵 = ((Base‘𝐶) × (Base‘𝐷)) |
| 12 | 6, 11 | eleqtrdi 2841 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
| 13 | xp1st 7948 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st ‘𝑋) ∈ (Base‘𝐶)) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑋) ∈ (Base‘𝐶)) |
| 15 | xp2nd 7949 | . . . 4 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd ‘𝑋) ∈ (Base‘𝐷)) | |
| 16 | 12, 15 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘𝑋) ∈ (Base‘𝐷)) |
| 17 | swapf2f1oa.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 18 | 17, 11 | eleqtrdi 2841 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷))) |
| 19 | xp1st 7948 | . . . 4 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (1st ‘𝑌) ∈ (Base‘𝐶)) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → (1st ‘𝑌) ∈ (Base‘𝐶)) |
| 21 | xp2nd 7949 | . . . 4 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → (2nd ‘𝑌) ∈ (Base‘𝐷)) | |
| 22 | 18, 21 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘𝑌) ∈ (Base‘𝐷)) |
| 23 | 1, 2, 3, 4, 5, 14, 16, 20, 22 | swapf2f1o 49308 | . 2 ⊢ (𝜑 → (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉):(〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)–1-1-onto→(〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉)) |
| 24 | 1st2nd2 7955 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 25 | 12, 24 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 26 | 1st2nd2 7955 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝐶) × (Base‘𝐷)) → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) | |
| 27 | 18, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑌 = 〈(1st ‘𝑌), (2nd ‘𝑌)〉) |
| 28 | 25, 27 | oveq12d 7359 | . . 3 ⊢ (𝜑 → (𝑋𝑃𝑌) = (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉)) |
| 29 | 25, 27 | oveq12d 7359 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)) |
| 30 | 1, 2, 7, 6 | swapf1a 49301 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = 〈(2nd ‘𝑋), (1st ‘𝑋)〉) |
| 31 | 1, 2, 7, 17 | swapf1a 49301 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑌) = 〈(2nd ‘𝑌), (1st ‘𝑌)〉) |
| 32 | 30, 31 | oveq12d 7359 | . . 3 ⊢ (𝜑 → ((𝑂‘𝑋)𝐽(𝑂‘𝑌)) = (〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉)) |
| 33 | 28, 29, 32 | f1oeq123d 6752 | . 2 ⊢ (𝜑 → ((𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌)) ↔ (〈(1st ‘𝑋), (2nd ‘𝑋)〉𝑃〈(1st ‘𝑌), (2nd ‘𝑌)〉):(〈(1st ‘𝑋), (2nd ‘𝑋)〉𝐻〈(1st ‘𝑌), (2nd ‘𝑌)〉)–1-1-onto→(〈(2nd ‘𝑋), (1st ‘𝑋)〉𝐽〈(2nd ‘𝑌), (1st ‘𝑌)〉))) |
| 34 | 23, 33 | mpbird 257 | 1 ⊢ (𝜑 → (𝑋𝑃𝑌):(𝑋𝐻𝑌)–1-1-onto→((𝑂‘𝑋)𝐽(𝑂‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4577 × cxp 5609 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Basecbs 17115 Hom chom 17167 ×c cxpc 18069 swapF cswapf 49291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-hom 17180 df-cco 17181 df-xpc 18073 df-swapf 49292 |
| This theorem is referenced by: swapfcoa 49313 swapffunc 49314 swapfffth 49315 |
| Copyright terms: Public domain | W3C validator |