![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgfixf1o | Structured version Visualization version GIF version |
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019.) |
Ref | Expression |
---|---|
symgfixf.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
symgfixf.q | ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} |
symgfixf.s | ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
symgfixf.h | ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) |
Ref | Expression |
---|---|
symgfixf1o | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–1-1-onto→𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgfixf.p | . . . 4 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
2 | symgfixf.q | . . . 4 ⊢ 𝑄 = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} | |
3 | symgfixf.s | . . . 4 ⊢ 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) | |
4 | symgfixf.h | . . . 4 ⊢ 𝐻 = (𝑞 ∈ 𝑄 ↦ (𝑞 ↾ (𝑁 ∖ {𝐾}))) | |
5 | 1, 2, 3, 4 | symgfixf1 18326 | . . 3 ⊢ (𝐾 ∈ 𝑁 → 𝐻:𝑄–1-1→𝑆) |
6 | 5 | adantl 474 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–1-1→𝑆) |
7 | 1, 2, 3, 4 | symgfixfo 18328 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–onto→𝑆) |
8 | df-f1o 6195 | . 2 ⊢ (𝐻:𝑄–1-1-onto→𝑆 ↔ (𝐻:𝑄–1-1→𝑆 ∧ 𝐻:𝑄–onto→𝑆)) | |
9 | 6, 7, 8 | sylanbrc 575 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐻:𝑄–1-1-onto→𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 {crab 3092 ∖ cdif 3826 {csn 4441 ↦ cmpt 5008 ↾ cres 5409 –1-1→wf1 6185 –onto→wfo 6186 –1-1-onto→wf1o 6187 ‘cfv 6188 Basecbs 16339 SymGrpcsymg 18266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-plusg 16434 df-tset 16440 df-symg 18267 |
This theorem is referenced by: smadiadetlem3 20981 |
Copyright terms: Public domain | W3C validator |