Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgreupthseg | Structured version Visualization version GIF version |
Description: The 𝑁-th edge in an eulerian path is the edge from 𝑃(𝑁) to 𝑃(𝑁 + 1). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
Ref | Expression |
---|---|
upgreupthseg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgreupthseg | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgreupthseg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | eqid 2759 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 1, 2 | upgreupthi 28107 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑛 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑛)) = {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))})) |
4 | 2fveq3 6669 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝐼‘(𝐹‘𝑛)) = (𝐼‘(𝐹‘𝑁))) | |
5 | fveq2 6664 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑃‘𝑛) = (𝑃‘𝑁)) | |
6 | fvoveq1 7180 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑁 + 1))) | |
7 | 5, 6 | preq12d 4638 | . . . . . 6 ⊢ (𝑛 = 𝑁 → {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))} = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
8 | 4, 7 | eqeq12d 2775 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((𝐼‘(𝐹‘𝑛)) = {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))} ↔ (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
9 | 8 | rspccv 3541 | . . . 4 ⊢ (∀𝑛 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑛)) = {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))} → (𝑁 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
10 | 9 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑛 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑛)) = {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))}) → (𝑁 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
11 | 3, 10 | syl 17 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (𝑁 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
12 | 11 | 3impia 1115 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ∀wral 3071 {cpr 4528 class class class wbr 5037 dom cdm 5529 ⟶wf 6337 –1-1-onto→wf1o 6340 ‘cfv 6341 (class class class)co 7157 0cc0 10589 1c1 10590 + caddc 10592 ...cfz 12953 ..^cfzo 13096 ♯chash 13754 Vtxcvtx 26903 iEdgciedg 26904 UPGraphcupgr 26987 EulerPathsceupth 28096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-2o 8120 df-oadd 8123 df-er 8306 df-map 8425 df-pm 8426 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-dju 9377 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-n0 11949 df-xnn0 12021 df-z 12035 df-uz 12297 df-fz 12954 df-fzo 13097 df-hash 13755 df-word 13928 df-edg 26955 df-uhgr 26965 df-upgr 26989 df-wlks 27503 df-trls 27596 df-eupth 28097 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |