![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgreupthseg | Structured version Visualization version GIF version |
Description: The 𝑁-th edge in an eulerian path is the edge from 𝑃(𝑁) to 𝑃(𝑁 + 1). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.) |
Ref | Expression |
---|---|
upgreupthseg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgreupthseg | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgreupthseg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 1, 2 | upgreupthi 29743 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑛 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑛)) = {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))})) |
4 | 2fveq3 6896 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝐼‘(𝐹‘𝑛)) = (𝐼‘(𝐹‘𝑁))) | |
5 | fveq2 6891 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑃‘𝑛) = (𝑃‘𝑁)) | |
6 | fvoveq1 7435 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑁 + 1))) | |
7 | 5, 6 | preq12d 4745 | . . . . . 6 ⊢ (𝑛 = 𝑁 → {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))} = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
8 | 4, 7 | eqeq12d 2747 | . . . . 5 ⊢ (𝑛 = 𝑁 → ((𝐼‘(𝐹‘𝑛)) = {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))} ↔ (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
9 | 8 | rspccv 3609 | . . . 4 ⊢ (∀𝑛 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑛)) = {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))} → (𝑁 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
10 | 9 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑛 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑛)) = {(𝑃‘𝑛), (𝑃‘(𝑛 + 1))}) → (𝑁 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
11 | 3, 10 | syl 17 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃) → (𝑁 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))})) |
12 | 11 | 3impia 1116 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(EulerPaths‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑁)) = {(𝑃‘𝑁), (𝑃‘(𝑁 + 1))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {cpr 4630 class class class wbr 5148 dom cdm 5676 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 + caddc 11119 ...cfz 13491 ..^cfzo 13634 ♯chash 14297 Vtxcvtx 28538 iEdgciedg 28539 UPGraphcupgr 28622 EulerPathsceupth 29732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-er 8709 df-map 8828 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-n0 12480 df-xnn0 12552 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-hash 14298 df-word 14472 df-edg 28590 df-uhgr 28600 df-upgr 28624 df-wlks 29138 df-trls 29231 df-eupth 29733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |