Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprf1o Structured version   Visualization version   GIF version

Theorem uspgrsprf1o 47999
Description: The mapping 𝐹 is a bijection between the "simple pseudographs" with a fixed set of vertices 𝑉 and the subsets of the set of pairs over the set 𝑉. See also the comments on uspgrbisymrel 48004. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p 𝑃 = 𝒫 (Pairs‘𝑉)
uspgrsprf.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrsprf.f 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
Assertion
Ref Expression
uspgrsprf1o (𝑉𝑊𝐹:𝐺1-1-onto𝑃)
Distinct variable groups:   𝑃,𝑒,𝑞,𝑣   𝑒,𝑉,𝑞,𝑣   𝑒,𝑊,𝑣   𝑔,𝐺   𝑃,𝑔,𝑒,𝑣   𝑊,𝑞
Allowed substitution hints:   𝐹(𝑣,𝑒,𝑔,𝑞)   𝐺(𝑣,𝑒,𝑞)   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem uspgrsprf1o
StepHypRef Expression
1 uspgrsprf.p . . . 4 𝑃 = 𝒫 (Pairs‘𝑉)
2 uspgrsprf.g . . . 4 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
3 uspgrsprf.f . . . 4 𝐹 = (𝑔𝐺 ↦ (2nd𝑔))
41, 2, 3uspgrsprf1 47997 . . 3 𝐹:𝐺1-1𝑃
54a1i 11 . 2 (𝑉𝑊𝐹:𝐺1-1𝑃)
61, 2, 3uspgrsprfo 47998 . 2 (𝑉𝑊𝐹:𝐺onto𝑃)
7 df-f1o 6547 . 2 (𝐹:𝐺1-1-onto𝑃 ↔ (𝐹:𝐺1-1𝑃𝐹:𝐺onto𝑃))
85, 6, 7sylanbrc 583 1 (𝑉𝑊𝐹:𝐺1-1-onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3059  𝒫 cpw 4580  {copab 5185  cmpt 5205  1-1wf1 6537  ontowfo 6538  1-1-ontowf1o 6539  cfv 6540  2nd c2nd 7994  Vtxcvtx 28940  Edgcedg 28991  USPGraphcuspgr 29092  Pairscspr 47398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-dju 9922  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-n0 12509  df-xnn0 12582  df-z 12596  df-uz 12860  df-fz 13529  df-hash 14351  df-vtx 28942  df-iedg 28943  df-edg 28992  df-upgr 29026  df-uspgr 29094  df-spr 47399
This theorem is referenced by:  uspgrex  48000  uspgrbispr  48001  uspgrbisymrelALT  48005
  Copyright terms: Public domain W3C validator