![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwnrepclwwn | Structured version Visualization version GIF version |
Description: If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk. Notice that 3 ≤ 𝑁 is required, because for 𝑁 = 2, (𝑤 prefix (𝑁 − 2)) = (𝑤 prefix 0) = ∅, but ∅ (and anything else) is not a representation of an empty closed walk as word, see clwwlkn0 27559. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 30-Oct-2022.) |
Ref | Expression |
---|---|
clwwnrepclwwn | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uz3m2nn 12104 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | |
2 | eluzelz 12067 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
3 | 2eluzge1 12107 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘1) | |
4 | subeluzsub 12088 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ (ℤ≥‘1)) → (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2))) | |
5 | 2, 3, 4 | sylancl 578 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2))) |
6 | 1, 5 | jca 504 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2)))) |
7 | 6 | 3ad2ant1 1114 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2)))) |
8 | clwwlknwwlksn 27569 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺)) | |
9 | 8 | 3ad2ant2 1115 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺)) |
10 | simp3 1119 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊‘(𝑁 − 2)) = (𝑊‘0)) | |
11 | clwwlkinwwlk 27571 | . 2 ⊢ ((((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2))) ∧ 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) | |
12 | 7, 9, 10, 11 | syl3anc 1352 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ‘cfv 6186 (class class class)co 6975 0cc0 10334 1c1 10335 − cmin 10669 ℕcn 11438 2c2 11494 3c3 11495 ℤcz 11792 ℤ≥cuz 12057 prefix cpfx 13851 WWalksN cwwlksn 27328 ClWWalksN cclwwlkn 27555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-map 8207 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-3 11503 df-n0 11707 df-xnn0 11779 df-z 11793 df-uz 12058 df-fz 12708 df-fzo 12849 df-hash 13505 df-word 13672 df-lsw 13725 df-substr 13803 df-pfx 13852 df-wwlks 27332 df-wwlksn 27333 df-clwwlk 27504 df-clwwlkn 27556 |
This theorem is referenced by: clwwnonrepclwwnon 27897 extwwlkfab 27907 |
Copyright terms: Public domain | W3C validator |