|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > clwwnrepclwwn | Structured version Visualization version GIF version | ||
| Description: If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk. Notice that 3 ≤ 𝑁 is required, because for 𝑁 = 2, (𝑤 prefix (𝑁 − 2)) = (𝑤 prefix 0) = ∅, but ∅ (and anything else) is not a representation of an empty closed walk as word, see clwwlkn0 30047. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 30-Oct-2022.) | 
| Ref | Expression | 
|---|---|
| clwwnrepclwwn | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uz3m2nn 12933 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | |
| 2 | eluzelz 12888 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℤ) | |
| 3 | 2eluzge1 12936 | . . . . 5 ⊢ 2 ∈ (ℤ≥‘1) | |
| 4 | subeluzsub 12915 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ (ℤ≥‘1)) → (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2))) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2))) | 
| 6 | 1, 5 | jca 511 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘3) → ((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2)))) | 
| 7 | 6 | 3ad2ant1 1134 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2)))) | 
| 8 | clwwlknwwlksn 30057 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺)) | |
| 9 | 8 | 3ad2ant2 1135 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺)) | 
| 10 | simp3 1139 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊‘(𝑁 − 2)) = (𝑊‘0)) | |
| 11 | clwwlkinwwlk 30059 | . 2 ⊢ ((((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑁 − 2))) ∧ 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) | |
| 12 | 7, 9, 10, 11 | syl3anc 1373 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 − cmin 11492 ℕcn 12266 2c2 12321 3c3 12322 ℤcz 12613 ℤ≥cuz 12878 prefix cpfx 14708 WWalksN cwwlksn 29846 ClWWalksN cclwwlkn 30043 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-lsw 14601 df-substr 14679 df-pfx 14709 df-wwlks 29850 df-wwlksn 29851 df-clwwlk 30001 df-clwwlkn 30044 | 
| This theorem is referenced by: clwwnonrepclwwnon 30364 extwwlkfab 30371 | 
| Copyright terms: Public domain | W3C validator |