Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwnrepclwwn Structured version   Visualization version   GIF version

Theorem clwwnrepclwwn 28143
 Description: If the initial vertex of a closed walk occurs another time in the walk, the walk starts with a closed walk. Notice that 3 ≤ 𝑁 is required, because for 𝑁 = 2, (𝑤 prefix (𝑁 − 2)) = (𝑤 prefix 0) = ∅, but ∅ (and anything else) is not a representation of an empty closed walk as word, see clwwlkn0 27827. (Contributed by Alexander van der Vekens, 15-Sep-2018.) (Revised by AV, 28-May-2021.) (Revised by AV, 30-Oct-2022.)
Assertion
Ref Expression
clwwnrepclwwn ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))

Proof of Theorem clwwnrepclwwn
StepHypRef Expression
1 uz3m2nn 12286 . . . 4 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℕ)
2 eluzelz 12248 . . . . 5 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
3 2eluzge1 12289 . . . . 5 2 ∈ (ℤ‘1)
4 subeluzsub 12270 . . . . 5 ((𝑁 ∈ ℤ ∧ 2 ∈ (ℤ‘1)) → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 2)))
52, 3, 4sylancl 589 . . . 4 (𝑁 ∈ (ℤ‘3) → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 2)))
61, 5jca 515 . . 3 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑁 − 2))))
763ad2ant1 1130 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → ((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑁 − 2))))
8 clwwlknwwlksn 27837 . . 3 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))
983ad2ant2 1131 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺))
10 simp3 1135 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊‘(𝑁 − 2)) = (𝑊‘0))
11 clwwlkinwwlk 27839 . 2 ((((𝑁 − 2) ∈ ℕ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑁 − 2))) ∧ 𝑊 ∈ ((𝑁 − 1) WWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
127, 9, 10, 11syl3anc 1368 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑊‘(𝑁 − 2)) = (𝑊‘0)) → (𝑊 prefix (𝑁 − 2)) ∈ ((𝑁 − 2) ClWWalksN 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ‘cfv 6327  (class class class)co 7140  0cc0 10533  1c1 10534   − cmin 10866  ℕcn 11632  2c2 11687  3c3 11688  ℤcz 11976  ℤ≥cuz 12238   prefix cpfx 14030   WWalksN cwwlksn 27626   ClWWalksN cclwwlkn 27823 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-2 11695  df-3 11696  df-n0 11893  df-xnn0 11963  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036  df-hash 13694  df-word 13865  df-lsw 13913  df-substr 14001  df-pfx 14031  df-wwlks 27630  df-wwlksn 27631  df-clwwlk 27781  df-clwwlkn 27824 This theorem is referenced by:  clwwnonrepclwwnon  28144  extwwlkfab  28151
 Copyright terms: Public domain W3C validator