Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashfzo | Structured version Visualization version GIF version |
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
hashfzo | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzo0 13339 | . . . . . 6 ⊢ (𝐴..^𝐴) = ∅ | |
2 | 1 | fveq2i 6759 | . . . . 5 ⊢ (♯‘(𝐴..^𝐴)) = (♯‘∅) |
3 | hash0 14010 | . . . . 5 ⊢ (♯‘∅) = 0 | |
4 | 2, 3 | eqtri 2766 | . . . 4 ⊢ (♯‘(𝐴..^𝐴)) = 0 |
5 | eluzel2 12516 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
6 | 5 | zcnd 12356 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
7 | 6 | subidd 11250 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 − 𝐴) = 0) |
8 | 4, 7 | eqtr4id 2798 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴)) |
9 | oveq2 7263 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴)) | |
10 | 9 | fveq2d 6760 | . . . 4 ⊢ (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴..^𝐴))) |
11 | oveq1 7262 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐵 − 𝐴) = (𝐴 − 𝐴)) | |
12 | 10, 11 | eqeq12d 2754 | . . 3 ⊢ (𝐵 = 𝐴 → ((♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴) ↔ (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴))) |
13 | 8, 12 | syl5ibrcom 246 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
14 | eluzelz 12521 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
15 | fzoval 13317 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) | |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) |
17 | 16 | fveq2d 6760 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
19 | hashfz 14070 | . . . . 5 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1)) | |
20 | 14 | zcnd 12356 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
21 | 1cnd 10901 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
22 | 20, 21, 6 | sub32d 11294 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵 − 𝐴) − 1)) |
23 | 22 | oveq1d 7270 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵 − 𝐴) − 1) + 1)) |
24 | 20, 6 | subcld 11262 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
25 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
26 | npcan 11160 | . . . . . . 7 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) | |
27 | 24, 25, 26 | sylancl 585 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) |
28 | 23, 27 | eqtrd 2778 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵 − 𝐴)) |
29 | 19, 28 | sylan9eqr 2801 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴...(𝐵 − 1))) = (𝐵 − 𝐴)) |
30 | 18, 29 | eqtrd 2778 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
31 | 30 | ex 412 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
32 | uzm1 12545 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ≥‘𝐴))) | |
33 | 13, 31, 32 | mpjaod 856 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 |
This theorem is referenced by: hashfzo0 14073 pntlemr 26655 circlemethhgt 32523 |
Copyright terms: Public domain | W3C validator |