| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfzo | Structured version Visualization version GIF version | ||
| Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| hashfzo | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzo0 13644 | . . . . . 6 ⊢ (𝐴..^𝐴) = ∅ | |
| 2 | 1 | fveq2i 6861 | . . . . 5 ⊢ (♯‘(𝐴..^𝐴)) = (♯‘∅) |
| 3 | hash0 14332 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 4 | 2, 3 | eqtri 2752 | . . . 4 ⊢ (♯‘(𝐴..^𝐴)) = 0 |
| 5 | eluzel2 12798 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 6 | 5 | zcnd 12639 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
| 7 | 6 | subidd 11521 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 − 𝐴) = 0) |
| 8 | 4, 7 | eqtr4id 2783 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴)) |
| 9 | oveq2 7395 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴)) | |
| 10 | 9 | fveq2d 6862 | . . . 4 ⊢ (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴..^𝐴))) |
| 11 | oveq1 7394 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐵 − 𝐴) = (𝐴 − 𝐴)) | |
| 12 | 10, 11 | eqeq12d 2745 | . . 3 ⊢ (𝐵 = 𝐴 → ((♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴) ↔ (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴))) |
| 13 | 8, 12 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
| 14 | eluzelz 12803 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 15 | fzoval 13621 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) | |
| 16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) |
| 17 | 16 | fveq2d 6862 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
| 19 | hashfz 14392 | . . . . 5 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1)) | |
| 20 | 14 | zcnd 12639 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
| 21 | 1cnd 11169 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 22 | 20, 21, 6 | sub32d 11565 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵 − 𝐴) − 1)) |
| 23 | 22 | oveq1d 7402 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵 − 𝐴) − 1) + 1)) |
| 24 | 20, 6 | subcld 11533 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
| 25 | ax-1cn 11126 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 26 | npcan 11430 | . . . . . . 7 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) | |
| 27 | 24, 25, 26 | sylancl 586 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) |
| 28 | 23, 27 | eqtrd 2764 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵 − 𝐴)) |
| 29 | 19, 28 | sylan9eqr 2786 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴...(𝐵 − 1))) = (𝐵 − 𝐴)) |
| 30 | 18, 29 | eqtrd 2764 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
| 31 | 30 | ex 412 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
| 32 | uzm1 12831 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ≥‘𝐴))) | |
| 33 | 13, 31, 32 | mpjaod 860 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 − cmin 11405 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 |
| This theorem is referenced by: hashfzo0 14395 pntlemr 27513 circlemethhgt 34634 |
| Copyright terms: Public domain | W3C validator |