Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashfzo | Structured version Visualization version GIF version |
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
hashfzo | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzo0 13411 | . . . . . 6 ⊢ (𝐴..^𝐴) = ∅ | |
2 | 1 | fveq2i 6777 | . . . . 5 ⊢ (♯‘(𝐴..^𝐴)) = (♯‘∅) |
3 | hash0 14082 | . . . . 5 ⊢ (♯‘∅) = 0 | |
4 | 2, 3 | eqtri 2766 | . . . 4 ⊢ (♯‘(𝐴..^𝐴)) = 0 |
5 | eluzel2 12587 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
6 | 5 | zcnd 12427 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
7 | 6 | subidd 11320 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 − 𝐴) = 0) |
8 | 4, 7 | eqtr4id 2797 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴)) |
9 | oveq2 7283 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴)) | |
10 | 9 | fveq2d 6778 | . . . 4 ⊢ (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴..^𝐴))) |
11 | oveq1 7282 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐵 − 𝐴) = (𝐴 − 𝐴)) | |
12 | 10, 11 | eqeq12d 2754 | . . 3 ⊢ (𝐵 = 𝐴 → ((♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴) ↔ (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴))) |
13 | 8, 12 | syl5ibrcom 246 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
14 | eluzelz 12592 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
15 | fzoval 13388 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) | |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) |
17 | 16 | fveq2d 6778 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
18 | 17 | adantr 481 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
19 | hashfz 14142 | . . . . 5 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1)) | |
20 | 14 | zcnd 12427 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
21 | 1cnd 10970 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
22 | 20, 21, 6 | sub32d 11364 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵 − 𝐴) − 1)) |
23 | 22 | oveq1d 7290 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵 − 𝐴) − 1) + 1)) |
24 | 20, 6 | subcld 11332 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
25 | ax-1cn 10929 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
26 | npcan 11230 | . . . . . . 7 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) | |
27 | 24, 25, 26 | sylancl 586 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) |
28 | 23, 27 | eqtrd 2778 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵 − 𝐴)) |
29 | 19, 28 | sylan9eqr 2800 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴...(𝐵 − 1))) = (𝐵 − 𝐴)) |
30 | 18, 29 | eqtrd 2778 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
31 | 30 | ex 413 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
32 | uzm1 12616 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ≥‘𝐴))) | |
33 | 13, 31, 32 | mpjaod 857 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 − cmin 11205 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 |
This theorem is referenced by: hashfzo0 14145 pntlemr 26750 circlemethhgt 32623 |
Copyright terms: Public domain | W3C validator |