| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashfzo | Structured version Visualization version GIF version | ||
| Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| hashfzo | ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzo0 13705 | . . . . . 6 ⊢ (𝐴..^𝐴) = ∅ | |
| 2 | 1 | fveq2i 6884 | . . . . 5 ⊢ (♯‘(𝐴..^𝐴)) = (♯‘∅) |
| 3 | hash0 14390 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 4 | 2, 3 | eqtri 2759 | . . . 4 ⊢ (♯‘(𝐴..^𝐴)) = 0 |
| 5 | eluzel2 12862 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℤ) | |
| 6 | 5 | zcnd 12703 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐴 ∈ ℂ) |
| 7 | 6 | subidd 11587 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴 − 𝐴) = 0) |
| 8 | 4, 7 | eqtr4id 2790 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴)) |
| 9 | oveq2 7418 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴)) | |
| 10 | 9 | fveq2d 6885 | . . . 4 ⊢ (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴..^𝐴))) |
| 11 | oveq1 7417 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐵 − 𝐴) = (𝐴 − 𝐴)) | |
| 12 | 10, 11 | eqeq12d 2752 | . . 3 ⊢ (𝐵 = 𝐴 → ((♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴) ↔ (♯‘(𝐴..^𝐴)) = (𝐴 − 𝐴))) |
| 13 | 8, 12 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
| 14 | eluzelz 12867 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℤ) | |
| 15 | fzoval 13682 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) | |
| 16 | 14, 15 | syl 17 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) |
| 17 | 16 | fveq2d 6885 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1)))) |
| 19 | hashfz 14450 | . . . . 5 ⊢ ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1)) | |
| 20 | 14 | zcnd 12703 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 𝐵 ∈ ℂ) |
| 21 | 1cnd 11235 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → 1 ∈ ℂ) | |
| 22 | 20, 21, 6 | sub32d 11631 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵 − 𝐴) − 1)) |
| 23 | 22 | oveq1d 7425 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵 − 𝐴) − 1) + 1)) |
| 24 | 20, 6 | subcld 11599 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 − 𝐴) ∈ ℂ) |
| 25 | ax-1cn 11192 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 26 | npcan 11496 | . . . . . . 7 ⊢ (((𝐵 − 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) | |
| 27 | 24, 25, 26 | sylancl 586 | . . . . . 6 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 𝐴) − 1) + 1) = (𝐵 − 𝐴)) |
| 28 | 23, 27 | eqtrd 2771 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵 − 𝐴)) |
| 29 | 19, 28 | sylan9eqr 2793 | . . . 4 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴...(𝐵 − 1))) = (𝐵 − 𝐴)) |
| 30 | 18, 29 | eqtrd 2771 | . . 3 ⊢ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐴)) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
| 31 | 30 | ex 412 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → ((𝐵 − 1) ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴))) |
| 32 | uzm1 12895 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ≥‘𝐴))) | |
| 33 | 13, 31, 32 | mpjaod 860 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵 − 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 + caddc 11137 − cmin 11471 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 ..^cfzo 13676 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 |
| This theorem is referenced by: hashfzo0 14453 pntlemr 27570 circlemethhgt 34680 |
| Copyright terms: Public domain | W3C validator |