MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfzo Structured version   Visualization version   GIF version

Theorem hashfzo 13883
Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzo
StepHypRef Expression
1 fzo0 13153 . . . . . 6 (𝐴..^𝐴) = ∅
21fveq2i 6678 . . . . 5 (♯‘(𝐴..^𝐴)) = (♯‘∅)
3 hash0 13821 . . . . 5 (♯‘∅) = 0
42, 3eqtri 2761 . . . 4 (♯‘(𝐴..^𝐴)) = 0
5 eluzel2 12330 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
65zcnd 12170 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
76subidd 11064 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴𝐴) = 0)
84, 7eqtr4id 2792 . . 3 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐴)) = (𝐴𝐴))
9 oveq2 7179 . . . . 5 (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴))
109fveq2d 6679 . . . 4 (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴..^𝐴)))
11 oveq1 7178 . . . 4 (𝐵 = 𝐴 → (𝐵𝐴) = (𝐴𝐴))
1210, 11eqeq12d 2754 . . 3 (𝐵 = 𝐴 → ((♯‘(𝐴..^𝐵)) = (𝐵𝐴) ↔ (♯‘(𝐴..^𝐴)) = (𝐴𝐴)))
138, 12syl5ibrcom 250 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 → (♯‘(𝐴..^𝐵)) = (𝐵𝐴)))
14 eluzelz 12335 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
15 fzoval 13131 . . . . . . 7 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1614, 15syl 17 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1716fveq2d 6679 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1))))
1817adantr 484 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (♯‘(𝐴..^𝐵)) = (♯‘(𝐴...(𝐵 − 1))))
19 hashfz 13881 . . . . 5 ((𝐵 − 1) ∈ (ℤ𝐴) → (♯‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1))
2014zcnd 12170 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
21 1cnd 10715 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
2220, 21, 6sub32d 11108 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵𝐴) − 1))
2322oveq1d 7186 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵𝐴) − 1) + 1))
2420, 6subcld 11076 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℂ)
25 ax-1cn 10674 . . . . . . 7 1 ∈ ℂ
26 npcan 10974 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2724, 25, 26sylancl 589 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2823, 27eqtrd 2773 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵𝐴))
2919, 28sylan9eqr 2795 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (♯‘(𝐴...(𝐵 − 1))) = (𝐵𝐴))
3018, 29eqtrd 2773 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))
3130ex 416 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴)))
32 uzm1 12359 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ𝐴)))
3313, 31, 32mpjaod 859 1 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴..^𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  c0 4212  cfv 6340  (class class class)co 7171  cc 10614  0cc0 10616  1c1 10617   + caddc 10619  cmin 10949  cz 12063  cuz 12325  ...cfz 12982  ..^cfzo 13125  chash 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-1st 7715  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-1o 8132  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-fin 8560  df-card 9442  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-nn 11718  df-n0 11978  df-z 12064  df-uz 12326  df-fz 12983  df-fzo 13126  df-hash 13784
This theorem is referenced by:  hashfzo0  13884  pntlemr  26338  circlemethhgt  32193
  Copyright terms: Public domain W3C validator