Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(ℤ≥‘(𝑁 + 1)) =
(ℤ≥‘(𝑁 + 1)) |
2 | | clim2prod.1 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | uzssz 12532 |
. . . . 5
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
4 | 2, 3 | eqsstri 3951 |
. . . 4
⊢ 𝑍 ⊆
ℤ |
5 | | clim2prod.2 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
6 | 4, 5 | sselid 3915 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | 6 | peano2zd 12358 |
. 2
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
8 | | clim2prod.4 |
. 2
⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴) |
9 | 5, 2 | eleqtrdi 2849 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
10 | | eluzel2 12516 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
11 | 9, 10 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | | clim2prod.3 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
13 | 2, 11, 12 | prodf 15527 |
. . 3
⊢ (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ) |
14 | 13, 5 | ffvelrnd 6944 |
. 2
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ) |
15 | | seqex 13651 |
. . 3
⊢ seq𝑀( · , 𝐹) ∈ V |
16 | 15 | a1i 11 |
. 2
⊢ (𝜑 → seq𝑀( · , 𝐹) ∈ V) |
17 | | peano2uz 12570 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) |
18 | | uzss 12534 |
. . . . . . . 8
⊢ ((𝑁 + 1) ∈
(ℤ≥‘𝑀) →
(ℤ≥‘(𝑁 + 1)) ⊆
(ℤ≥‘𝑀)) |
19 | 9, 17, 18 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆
(ℤ≥‘𝑀)) |
20 | 19, 2 | sseqtrrdi 3968 |
. . . . . 6
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆ 𝑍) |
21 | 20 | sselda 3917 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
22 | 21, 12 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑘) ∈ ℂ) |
23 | 1, 7, 22 | prodf 15527 |
. . 3
⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ≥‘(𝑁 +
1))⟶ℂ) |
24 | 23 | ffvelrnda 6943 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑘) ∈ ℂ) |
25 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = (𝑁 + 1) → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘(𝑁 + 1))) |
26 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = (𝑁 + 1) → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))) |
27 | 26 | oveq2d 7271 |
. . . . . 6
⊢ (𝑥 = (𝑁 + 1) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))) |
28 | 25, 27 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = (𝑁 + 1) → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))) |
29 | 28 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑁 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))))) |
30 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘𝑛)) |
31 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) |
32 | 31 | oveq2d 7271 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) |
33 | 30, 32 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)))) |
34 | 33 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))))) |
35 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘(𝑛 + 1))) |
36 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))) |
37 | 36 | oveq2d 7271 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))) |
38 | 35, 37 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))) |
39 | 38 | imbi2d 340 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))))) |
40 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘𝑘)) |
41 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘𝑘)) |
42 | 41 | oveq2d 7271 |
. . . . . 6
⊢ (𝑥 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘))) |
43 | 40, 42 | eqeq12d 2754 |
. . . . 5
⊢ (𝑥 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))) |
44 | 43 | imbi2d 340 |
. . . 4
⊢ (𝑥 = 𝑘 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘))))) |
45 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → 𝑁 ∈
(ℤ≥‘𝑀)) |
46 | | seqp1 13664 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1)))) |
47 | 45, 46 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1)))) |
48 | | seq1 13662 |
. . . . . . . 8
⊢ ((𝑁 + 1) ∈ ℤ →
(seq(𝑁 + 1)( · ,
𝐹)‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1))) |
49 | 48 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1))) |
50 | 49 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1)))) |
51 | 47, 50 | eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))) |
52 | 51 | expcom 413 |
. . . 4
⊢ ((𝑁 + 1) ∈ ℤ →
(𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))) |
53 | 19 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑛 ∈
(ℤ≥‘𝑀)) |
54 | | seqp1 13664 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
55 | 53, 54 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
56 | 55 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
57 | | oveq1 7262 |
. . . . . . . . 9
⊢
((seq𝑀( · ,
𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1)))) |
58 | 57 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1)))) |
59 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ) |
60 | 23 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑛) ∈ ℂ) |
61 | | peano2uz 12570 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
62 | 61, 2 | eleqtrrdi 2850 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈ 𝑍) |
63 | 53, 62 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (𝑛 + 1) ∈ 𝑍) |
64 | 12 | ralrimiva 3107 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
65 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
66 | 65 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
67 | 66 | rspcv 3547 |
. . . . . . . . . . . . 13
⊢ ((𝑛 + 1) ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → (𝐹‘(𝑛 + 1)) ∈ ℂ)) |
68 | 64, 67 | mpan9 506 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐹‘(𝑛 + 1)) ∈ ℂ) |
69 | 63, 68 | syldan 590 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘(𝑛 + 1)) ∈ ℂ) |
70 | 59, 60, 69 | mulassd 10929 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
71 | 70 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
72 | | seqp1 13664 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘(𝑁 + 1)) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)) = ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
73 | 72 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)) = ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) |
74 | 73 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
75 | 74 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))) |
76 | 71, 75 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))) |
77 | 56, 58, 76 | 3eqtrd 2782 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))) |
78 | 77 | exp31 419 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))))) |
79 | 78 | com12 32 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘(𝑁 + 1)) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))))) |
80 | 79 | a2d 29 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘(𝑁 + 1)) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))))) |
81 | 29, 34, 39, 44, 52, 80 | uzind4 12575 |
. . 3
⊢ (𝑘 ∈
(ℤ≥‘(𝑁 + 1)) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))) |
82 | 81 | impcom 407 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘))) |
83 | 1, 7, 8, 14, 16, 24, 82 | climmulc2 15274 |
1
⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴)) |