MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2prod Structured version   Visualization version   GIF version

Theorem clim2prod 15909
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1 𝑍 = (ℤ𝑀)
clim2prod.2 (𝜑𝑁𝑍)
clim2prod.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2prod.4 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴)
Assertion
Ref Expression
clim2prod (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍

Proof of Theorem clim2prod
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2prod.1 . . . . 5 𝑍 = (ℤ𝑀)
3 uzssz 12878 . . . . 5 (ℤ𝑀) ⊆ ℤ
42, 3eqsstri 4010 . . . 4 𝑍 ⊆ ℤ
5 clim2prod.2 . . . 4 (𝜑𝑁𝑍)
64, 5sselid 3961 . . 3 (𝜑𝑁 ∈ ℤ)
76peano2zd 12705 . 2 (𝜑 → (𝑁 + 1) ∈ ℤ)
8 clim2prod.4 . 2 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴)
95, 2eleqtrdi 2845 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
10 eluzel2 12862 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
119, 10syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
12 clim2prod.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
132, 11, 12prodf 15908 . . 3 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
1413, 5ffvelcdmd 7080 . 2 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
15 seqex 14026 . . 3 seq𝑀( · , 𝐹) ∈ V
1615a1i 11 . 2 (𝜑 → seq𝑀( · , 𝐹) ∈ V)
17 peano2uz 12922 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
18 uzss 12880 . . . . . . . 8 ((𝑁 + 1) ∈ (ℤ𝑀) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
199, 17, 183syl 18 . . . . . . 7 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
2019, 2sseqtrrdi 4005 . . . . . 6 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ 𝑍)
2120sselda 3963 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
2221, 12syldan 591 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
231, 7, 22prodf 15908 . . 3 (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
2423ffvelcdmda 7079 . 2 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑘) ∈ ℂ)
25 fveq2 6881 . . . . . 6 (𝑥 = (𝑁 + 1) → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘(𝑁 + 1)))
26 fveq2 6881 . . . . . . 7 (𝑥 = (𝑁 + 1) → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))
2726oveq2d 7426 . . . . . 6 (𝑥 = (𝑁 + 1) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))
2825, 27eqeq12d 2752 . . . . 5 (𝑥 = (𝑁 + 1) → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))))
2928imbi2d 340 . . . 4 (𝑥 = (𝑁 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))))
30 fveq2 6881 . . . . . 6 (𝑥 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘𝑛))
31 fveq2 6881 . . . . . . 7 (𝑥 = 𝑛 → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘𝑛))
3231oveq2d 7426 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)))
3330, 32eqeq12d 2752 . . . . 5 (𝑥 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))))
3433imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)))))
35 fveq2 6881 . . . . . 6 (𝑥 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
36 fveq2 6881 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))
3736oveq2d 7426 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))
3835, 37eqeq12d 2752 . . . . 5 (𝑥 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))))
3938imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
40 fveq2 6881 . . . . . 6 (𝑥 = 𝑘 → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘𝑘))
41 fveq2 6881 . . . . . . 7 (𝑥 = 𝑘 → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘𝑘))
4241oveq2d 7426 . . . . . 6 (𝑥 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))
4340, 42eqeq12d 2752 . . . . 5 (𝑥 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘))))
4443imbi2d 340 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))))
459adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → 𝑁 ∈ (ℤ𝑀))
46 seqp1 14039 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1))))
4745, 46syl 17 . . . . . 6 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1))))
48 seq1 14037 . . . . . . . 8 ((𝑁 + 1) ∈ ℤ → (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
4948adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
5049oveq2d 7426 . . . . . 6 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1))))
5147, 50eqtr4d 2774 . . . . 5 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))
5251expcom 413 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))))
5319sselda 3963 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ𝑀))
54 seqp1 14039 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
5553, 54syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
5655adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
57 oveq1 7417 . . . . . . . . 9 ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))))
5857adantl 481 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))))
5914adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
6023ffvelcdmda 7079 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑛) ∈ ℂ)
61 peano2uz 12922 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
6261, 2eleqtrrdi 2846 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
6353, 62syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝑛 + 1) ∈ 𝑍)
6412ralrimiva 3133 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
65 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
6665eleq1d 2820 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
6766rspcv 3602 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝐹‘(𝑛 + 1)) ∈ ℂ))
6864, 67mpan9 506 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
6963, 68syldan 591 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
7059, 60, 69mulassd 11263 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
7170adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
72 seqp1 14039 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)) = ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
7372adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)) = ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
7473oveq2d 7426 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
7574adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
7671, 75eqtr4d 2774 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))
7756, 58, 763eqtrd 2775 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))
7877exp31 419 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ‘(𝑁 + 1)) → ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
7978com12 32 . . . . 5 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
8079a2d 29 . . . 4 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
8129, 34, 39, 44, 52, 80uzind4 12927 . . 3 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘))))
8281impcom 407 . 2 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))
831, 7, 8, 14, 16, 24, 82climmulc2 15658 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  1c1 11135   + caddc 11137   · cmul 11139  cz 12593  cuz 12857  seqcseq 14024  cli 15505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509
This theorem is referenced by:  ntrivcvg  15918
  Copyright terms: Public domain W3C validator