MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2prod Structured version   Visualization version   GIF version

Theorem clim2prod 15921
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1 𝑍 = (ℤ𝑀)
clim2prod.2 (𝜑𝑁𝑍)
clim2prod.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2prod.4 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴)
Assertion
Ref Expression
clim2prod (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍

Proof of Theorem clim2prod
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . 2 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2prod.1 . . . . 5 𝑍 = (ℤ𝑀)
3 uzssz 12897 . . . . 5 (ℤ𝑀) ⊆ ℤ
42, 3eqsstri 4030 . . . 4 𝑍 ⊆ ℤ
5 clim2prod.2 . . . 4 (𝜑𝑁𝑍)
64, 5sselid 3993 . . 3 (𝜑𝑁 ∈ ℤ)
76peano2zd 12723 . 2 (𝜑 → (𝑁 + 1) ∈ ℤ)
8 clim2prod.4 . 2 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ 𝐴)
95, 2eleqtrdi 2849 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
10 eluzel2 12881 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
119, 10syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
12 clim2prod.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
132, 11, 12prodf 15920 . . 3 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
1413, 5ffvelcdmd 7105 . 2 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
15 seqex 14041 . . 3 seq𝑀( · , 𝐹) ∈ V
1615a1i 11 . 2 (𝜑 → seq𝑀( · , 𝐹) ∈ V)
17 peano2uz 12941 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
18 uzss 12899 . . . . . . . 8 ((𝑁 + 1) ∈ (ℤ𝑀) → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
199, 17, 183syl 18 . . . . . . 7 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ (ℤ𝑀))
2019, 2sseqtrrdi 4047 . . . . . 6 (𝜑 → (ℤ‘(𝑁 + 1)) ⊆ 𝑍)
2120sselda 3995 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
2221, 12syldan 591 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
231, 7, 22prodf 15920 . . 3 (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
2423ffvelcdmda 7104 . 2 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑘) ∈ ℂ)
25 fveq2 6907 . . . . . 6 (𝑥 = (𝑁 + 1) → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘(𝑁 + 1)))
26 fveq2 6907 . . . . . . 7 (𝑥 = (𝑁 + 1) → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))
2726oveq2d 7447 . . . . . 6 (𝑥 = (𝑁 + 1) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))
2825, 27eqeq12d 2751 . . . . 5 (𝑥 = (𝑁 + 1) → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))))
2928imbi2d 340 . . . 4 (𝑥 = (𝑁 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))))
30 fveq2 6907 . . . . . 6 (𝑥 = 𝑛 → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘𝑛))
31 fveq2 6907 . . . . . . 7 (𝑥 = 𝑛 → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘𝑛))
3231oveq2d 7447 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)))
3330, 32eqeq12d 2751 . . . . 5 (𝑥 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))))
3433imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)))))
35 fveq2 6907 . . . . . 6 (𝑥 = (𝑛 + 1) → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘(𝑛 + 1)))
36 fveq2 6907 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))
3736oveq2d 7447 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))
3835, 37eqeq12d 2751 . . . . 5 (𝑥 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)))))
3938imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
40 fveq2 6907 . . . . . 6 (𝑥 = 𝑘 → (seq𝑀( · , 𝐹)‘𝑥) = (seq𝑀( · , 𝐹)‘𝑘))
41 fveq2 6907 . . . . . . 7 (𝑥 = 𝑘 → (seq(𝑁 + 1)( · , 𝐹)‘𝑥) = (seq(𝑁 + 1)( · , 𝐹)‘𝑘))
4241oveq2d 7447 . . . . . 6 (𝑥 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))
4340, 42eqeq12d 2751 . . . . 5 (𝑥 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥)) ↔ (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘))))
4443imbi2d 340 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑥) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑥))) ↔ (𝜑 → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))))
459adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → 𝑁 ∈ (ℤ𝑀))
46 seqp1 14054 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1))))
4745, 46syl 17 . . . . . 6 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1))))
48 seq1 14052 . . . . . . . 8 ((𝑁 + 1) ∈ ℤ → (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
4948adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)) = (𝐹‘(𝑁 + 1)))
5049oveq2d 7447 . . . . . 6 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · (𝐹‘(𝑁 + 1))))
5147, 50eqtr4d 2778 . . . . 5 ((𝜑 ∧ (𝑁 + 1) ∈ ℤ) → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1))))
5251expcom 413 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑁 + 1)))))
5319sselda 3995 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → 𝑛 ∈ (ℤ𝑀))
54 seqp1 14054 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
5553, 54syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
5655adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
57 oveq1 7438 . . . . . . . . 9 ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))))
5857adantl 481 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))))
5914adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
6023ffvelcdmda 7104 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑛) ∈ ℂ)
61 peano2uz 12941 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
6261, 2eleqtrrdi 2850 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
6353, 62syl 17 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝑛 + 1) ∈ 𝑍)
6412ralrimiva 3144 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
65 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
6665eleq1d 2824 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
6766rspcv 3618 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝐹‘(𝑛 + 1)) ∈ ℂ))
6864, 67mpan9 506 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
6963, 68syldan 591 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
7059, 60, 69mulassd 11282 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
7170adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
72 seqp1 14054 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)) = ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
7372adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1)) = ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
7473oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
7574adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · ((seq(𝑁 + 1)( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))))
7671, 75eqtr4d 2778 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) · (𝐹‘(𝑛 + 1))) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))
7756, 58, 763eqtrd 2779 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ‘(𝑁 + 1))) ∧ (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))
7877exp31 419 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ‘(𝑁 + 1)) → ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
7978com12 32 . . . . 5 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛)) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
8079a2d 29 . . . 4 (𝑛 ∈ (ℤ‘(𝑁 + 1)) → ((𝜑 → (seq𝑀( · , 𝐹)‘𝑛) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑛))) → (𝜑 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘(𝑛 + 1))))))
8129, 34, 39, 44, 52, 80uzind4 12946 . . 3 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘))))
8281impcom 407 . 2 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑘) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑘)))
831, 7, 8, 14, 16, 24, 82climmulc2 15670 1 (𝜑 → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘𝑁) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156   · cmul 11158  cz 12611  cuz 12876  seqcseq 14039  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  ntrivcvg  15930
  Copyright terms: Public domain W3C validator