MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2prod Structured version   Visualization version   GIF version

Theorem clim2prod 15866
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1 𝑍 = (β„€β‰₯β€˜π‘€)
clim2prod.2 (πœ‘ β†’ 𝑁 ∈ 𝑍)
clim2prod.3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
clim2prod.4 (πœ‘ β†’ seq(𝑁 + 1)( Β· , 𝐹) ⇝ 𝐴)
Assertion
Ref Expression
clim2prod (πœ‘ β†’ seq𝑀( Β· , 𝐹) ⇝ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· 𝐴))
Distinct variable groups:   𝐴,π‘˜   π‘˜,𝐹   πœ‘,π‘˜   π‘˜,𝑀   π‘˜,𝑁   π‘˜,𝑍

Proof of Theorem clim2prod
Dummy variables 𝑛 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2725 . 2 (β„€β‰₯β€˜(𝑁 + 1)) = (β„€β‰₯β€˜(𝑁 + 1))
2 clim2prod.1 . . . . 5 𝑍 = (β„€β‰₯β€˜π‘€)
3 uzssz 12873 . . . . 5 (β„€β‰₯β€˜π‘€) βŠ† β„€
42, 3eqsstri 4007 . . . 4 𝑍 βŠ† β„€
5 clim2prod.2 . . . 4 (πœ‘ β†’ 𝑁 ∈ 𝑍)
64, 5sselid 3970 . . 3 (πœ‘ β†’ 𝑁 ∈ β„€)
76peano2zd 12699 . 2 (πœ‘ β†’ (𝑁 + 1) ∈ β„€)
8 clim2prod.4 . 2 (πœ‘ β†’ seq(𝑁 + 1)( Β· , 𝐹) ⇝ 𝐴)
95, 2eleqtrdi 2835 . . . . 5 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
10 eluzel2 12857 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ β„€)
119, 10syl 17 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„€)
12 clim2prod.3 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
132, 11, 12prodf 15865 . . 3 (πœ‘ β†’ seq𝑀( Β· , 𝐹):π‘βŸΆβ„‚)
1413, 5ffvelcdmd 7090 . 2 (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘) ∈ β„‚)
15 seqex 14000 . . 3 seq𝑀( Β· , 𝐹) ∈ V
1615a1i 11 . 2 (πœ‘ β†’ seq𝑀( Β· , 𝐹) ∈ V)
17 peano2uz 12915 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑁 + 1) ∈ (β„€β‰₯β€˜π‘€))
18 uzss 12875 . . . . . . . 8 ((𝑁 + 1) ∈ (β„€β‰₯β€˜π‘€) β†’ (β„€β‰₯β€˜(𝑁 + 1)) βŠ† (β„€β‰₯β€˜π‘€))
199, 17, 183syl 18 . . . . . . 7 (πœ‘ β†’ (β„€β‰₯β€˜(𝑁 + 1)) βŠ† (β„€β‰₯β€˜π‘€))
2019, 2sseqtrrdi 4024 . . . . . 6 (πœ‘ β†’ (β„€β‰₯β€˜(𝑁 + 1)) βŠ† 𝑍)
2120sselda 3972 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ π‘˜ ∈ 𝑍)
2221, 12syldan 589 . . . 4 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
231, 7, 22prodf 15865 . . 3 (πœ‘ β†’ seq(𝑁 + 1)( Β· , 𝐹):(β„€β‰₯β€˜(𝑁 + 1))βŸΆβ„‚)
2423ffvelcdmda 7089 . 2 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜) ∈ β„‚)
25 fveq2 6892 . . . . . 6 (π‘₯ = (𝑁 + 1) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)))
26 fveq2 6892 . . . . . . 7 (π‘₯ = (𝑁 + 1) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)))
2726oveq2d 7432 . . . . . 6 (π‘₯ = (𝑁 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))))
2825, 27eqeq12d 2741 . . . . 5 (π‘₯ = (𝑁 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)))))
2928imbi2d 339 . . . 4 (π‘₯ = (𝑁 + 1) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))))))
30 fveq2 6892 . . . . . 6 (π‘₯ = 𝑛 β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜π‘›))
31 fveq2 6892 . . . . . . 7 (π‘₯ = 𝑛 β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))
3231oveq2d 7432 . . . . . 6 (π‘₯ = 𝑛 β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)))
3330, 32eqeq12d 2741 . . . . 5 (π‘₯ = 𝑛 β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))))
3433imbi2d 339 . . . 4 (π‘₯ = 𝑛 β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)))))
35 fveq2 6892 . . . . . 6 (π‘₯ = (𝑛 + 1) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)))
36 fveq2 6892 . . . . . . 7 (π‘₯ = (𝑛 + 1) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)))
3736oveq2d 7432 . . . . . 6 (π‘₯ = (𝑛 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))
3835, 37eqeq12d 2741 . . . . 5 (π‘₯ = (𝑛 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)))))
3938imbi2d 339 . . . 4 (π‘₯ = (𝑛 + 1) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
40 fveq2 6892 . . . . . 6 (π‘₯ = π‘˜ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜π‘˜))
41 fveq2 6892 . . . . . . 7 (π‘₯ = π‘˜ β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜))
4241oveq2d 7432 . . . . . 6 (π‘₯ = π‘˜ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜)))
4340, 42eqeq12d 2741 . . . . 5 (π‘₯ = π‘˜ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜))))
4443imbi2d 339 . . . 4 (π‘₯ = π‘˜ β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜)))))
459adantr 479 . . . . . . 7 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
46 seqp1 14013 . . . . . . 7 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (πΉβ€˜(𝑁 + 1))))
4745, 46syl 17 . . . . . 6 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (πΉβ€˜(𝑁 + 1))))
48 seq1 14011 . . . . . . . 8 ((𝑁 + 1) ∈ β„€ β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)) = (πΉβ€˜(𝑁 + 1)))
4948adantl 480 . . . . . . 7 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)) = (πΉβ€˜(𝑁 + 1)))
5049oveq2d 7432 . . . . . 6 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (πΉβ€˜(𝑁 + 1))))
5147, 50eqtr4d 2768 . . . . 5 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))))
5251expcom 412 . . . 4 ((𝑁 + 1) ∈ β„€ β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)))))
5319sselda 3972 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
54 seqp1 14013 . . . . . . . . . 10 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
5553, 54syl 17 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
5655adantr 479 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
57 oveq1 7423 . . . . . . . . 9 ((seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))) = (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))))
5857adantl 480 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))) = (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))))
5914adantr 479 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘) ∈ β„‚)
6023ffvelcdmda 7089 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) ∈ β„‚)
61 peano2uz 12915 . . . . . . . . . . . . . 14 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ (β„€β‰₯β€˜π‘€))
6261, 2eleqtrrdi 2836 . . . . . . . . . . . . 13 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ 𝑍)
6353, 62syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (𝑛 + 1) ∈ 𝑍)
6412ralrimiva 3136 . . . . . . . . . . . . 13 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝑍 (πΉβ€˜π‘˜) ∈ β„‚)
65 fveq2 6892 . . . . . . . . . . . . . . 15 (π‘˜ = (𝑛 + 1) β†’ (πΉβ€˜π‘˜) = (πΉβ€˜(𝑛 + 1)))
6665eleq1d 2810 . . . . . . . . . . . . . 14 (π‘˜ = (𝑛 + 1) β†’ ((πΉβ€˜π‘˜) ∈ β„‚ ↔ (πΉβ€˜(𝑛 + 1)) ∈ β„‚))
6766rspcv 3597 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ 𝑍 β†’ (βˆ€π‘˜ ∈ 𝑍 (πΉβ€˜π‘˜) ∈ β„‚ β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚))
6864, 67mpan9 505 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑛 + 1) ∈ 𝑍) β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)
6963, 68syldan 589 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)
7059, 60, 69mulassd 11267 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
7170adantr 479 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
72 seqp1 14013 . . . . . . . . . . . 12 (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
7372adantl 480 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
7473oveq2d 7432 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
7574adantr 479 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
7671, 75eqtr4d 2768 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))
7756, 58, 763eqtrd 2769 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))
7877exp31 418 . . . . . 6 (πœ‘ β†’ (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
7978com12 32 . . . . 5 (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ (πœ‘ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
8079a2d 29 . . . 4 (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
8129, 34, 39, 44, 52, 80uzind4 12920 . . 3 (π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜))))
8281impcom 406 . 2 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜)))
831, 7, 8, 14, 16, 24, 82climmulc2 15613 1 (πœ‘ β†’ seq𝑀( Β· , 𝐹) ⇝ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  Vcvv 3463   βŠ† wss 3939   class class class wbr 5143  β€˜cfv 6543  (class class class)co 7416  β„‚cc 11136  1c1 11139   + caddc 11141   Β· cmul 11143  β„€cz 12588  β„€β‰₯cuz 12852  seqcseq 13998   ⇝ cli 15460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464
This theorem is referenced by:  ntrivcvg  15875
  Copyright terms: Public domain W3C validator