MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2prod Structured version   Visualization version   GIF version

Theorem clim2prod 15830
Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
clim2prod.1 𝑍 = (β„€β‰₯β€˜π‘€)
clim2prod.2 (πœ‘ β†’ 𝑁 ∈ 𝑍)
clim2prod.3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
clim2prod.4 (πœ‘ β†’ seq(𝑁 + 1)( Β· , 𝐹) ⇝ 𝐴)
Assertion
Ref Expression
clim2prod (πœ‘ β†’ seq𝑀( Β· , 𝐹) ⇝ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· 𝐴))
Distinct variable groups:   𝐴,π‘˜   π‘˜,𝐹   πœ‘,π‘˜   π‘˜,𝑀   π‘˜,𝑁   π‘˜,𝑍

Proof of Theorem clim2prod
Dummy variables 𝑛 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . 2 (β„€β‰₯β€˜(𝑁 + 1)) = (β„€β‰₯β€˜(𝑁 + 1))
2 clim2prod.1 . . . . 5 𝑍 = (β„€β‰₯β€˜π‘€)
3 uzssz 12839 . . . . 5 (β„€β‰₯β€˜π‘€) βŠ† β„€
42, 3eqsstri 4015 . . . 4 𝑍 βŠ† β„€
5 clim2prod.2 . . . 4 (πœ‘ β†’ 𝑁 ∈ 𝑍)
64, 5sselid 3979 . . 3 (πœ‘ β†’ 𝑁 ∈ β„€)
76peano2zd 12665 . 2 (πœ‘ β†’ (𝑁 + 1) ∈ β„€)
8 clim2prod.4 . 2 (πœ‘ β†’ seq(𝑁 + 1)( Β· , 𝐹) ⇝ 𝐴)
95, 2eleqtrdi 2843 . . . . 5 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
10 eluzel2 12823 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ β„€)
119, 10syl 17 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„€)
12 clim2prod.3 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
132, 11, 12prodf 15829 . . 3 (πœ‘ β†’ seq𝑀( Β· , 𝐹):π‘βŸΆβ„‚)
1413, 5ffvelcdmd 7084 . 2 (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘) ∈ β„‚)
15 seqex 13964 . . 3 seq𝑀( Β· , 𝐹) ∈ V
1615a1i 11 . 2 (πœ‘ β†’ seq𝑀( Β· , 𝐹) ∈ V)
17 peano2uz 12881 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑁 + 1) ∈ (β„€β‰₯β€˜π‘€))
18 uzss 12841 . . . . . . . 8 ((𝑁 + 1) ∈ (β„€β‰₯β€˜π‘€) β†’ (β„€β‰₯β€˜(𝑁 + 1)) βŠ† (β„€β‰₯β€˜π‘€))
199, 17, 183syl 18 . . . . . . 7 (πœ‘ β†’ (β„€β‰₯β€˜(𝑁 + 1)) βŠ† (β„€β‰₯β€˜π‘€))
2019, 2sseqtrrdi 4032 . . . . . 6 (πœ‘ β†’ (β„€β‰₯β€˜(𝑁 + 1)) βŠ† 𝑍)
2120sselda 3981 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ π‘˜ ∈ 𝑍)
2221, 12syldan 591 . . . 4 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
231, 7, 22prodf 15829 . . 3 (πœ‘ β†’ seq(𝑁 + 1)( Β· , 𝐹):(β„€β‰₯β€˜(𝑁 + 1))βŸΆβ„‚)
2423ffvelcdmda 7083 . 2 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜) ∈ β„‚)
25 fveq2 6888 . . . . . 6 (π‘₯ = (𝑁 + 1) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)))
26 fveq2 6888 . . . . . . 7 (π‘₯ = (𝑁 + 1) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)))
2726oveq2d 7421 . . . . . 6 (π‘₯ = (𝑁 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))))
2825, 27eqeq12d 2748 . . . . 5 (π‘₯ = (𝑁 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)))))
2928imbi2d 340 . . . 4 (π‘₯ = (𝑁 + 1) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))))))
30 fveq2 6888 . . . . . 6 (π‘₯ = 𝑛 β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜π‘›))
31 fveq2 6888 . . . . . . 7 (π‘₯ = 𝑛 β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))
3231oveq2d 7421 . . . . . 6 (π‘₯ = 𝑛 β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)))
3330, 32eqeq12d 2748 . . . . 5 (π‘₯ = 𝑛 β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))))
3433imbi2d 340 . . . 4 (π‘₯ = 𝑛 β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)))))
35 fveq2 6888 . . . . . 6 (π‘₯ = (𝑛 + 1) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)))
36 fveq2 6888 . . . . . . 7 (π‘₯ = (𝑛 + 1) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)))
3736oveq2d 7421 . . . . . 6 (π‘₯ = (𝑛 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))
3835, 37eqeq12d 2748 . . . . 5 (π‘₯ = (𝑛 + 1) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)))))
3938imbi2d 340 . . . 4 (π‘₯ = (𝑛 + 1) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
40 fveq2 6888 . . . . . 6 (π‘₯ = π‘˜ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = (seq𝑀( Β· , 𝐹)β€˜π‘˜))
41 fveq2 6888 . . . . . . 7 (π‘₯ = π‘˜ β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯) = (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜))
4241oveq2d 7421 . . . . . 6 (π‘₯ = π‘˜ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜)))
4340, 42eqeq12d 2748 . . . . 5 (π‘₯ = π‘˜ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯)) ↔ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜))))
4443imbi2d 340 . . . 4 (π‘₯ = π‘˜ β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘₯) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘₯))) ↔ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜)))))
459adantr 481 . . . . . . 7 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
46 seqp1 13977 . . . . . . 7 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (πΉβ€˜(𝑁 + 1))))
4745, 46syl 17 . . . . . 6 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (πΉβ€˜(𝑁 + 1))))
48 seq1 13975 . . . . . . . 8 ((𝑁 + 1) ∈ β„€ β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)) = (πΉβ€˜(𝑁 + 1)))
4948adantl 482 . . . . . . 7 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)) = (πΉβ€˜(𝑁 + 1)))
5049oveq2d 7421 . . . . . 6 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (πΉβ€˜(𝑁 + 1))))
5147, 50eqtr4d 2775 . . . . 5 ((πœ‘ ∧ (𝑁 + 1) ∈ β„€) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1))))
5251expcom 414 . . . 4 ((𝑁 + 1) ∈ β„€ β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑁 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑁 + 1)))))
5319sselda 3981 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
54 seqp1 13977 . . . . . . . . . 10 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
5553, 54syl 17 . . . . . . . . 9 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
5655adantr 481 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
57 oveq1 7412 . . . . . . . . 9 ((seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))) = (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))))
5857adantl 482 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))) = (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))))
5914adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘) ∈ β„‚)
6023ffvelcdmda 7083 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) ∈ β„‚)
61 peano2uz 12881 . . . . . . . . . . . . . 14 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ (β„€β‰₯β€˜π‘€))
6261, 2eleqtrrdi 2844 . . . . . . . . . . . . 13 (𝑛 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑛 + 1) ∈ 𝑍)
6353, 62syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (𝑛 + 1) ∈ 𝑍)
6412ralrimiva 3146 . . . . . . . . . . . . 13 (πœ‘ β†’ βˆ€π‘˜ ∈ 𝑍 (πΉβ€˜π‘˜) ∈ β„‚)
65 fveq2 6888 . . . . . . . . . . . . . . 15 (π‘˜ = (𝑛 + 1) β†’ (πΉβ€˜π‘˜) = (πΉβ€˜(𝑛 + 1)))
6665eleq1d 2818 . . . . . . . . . . . . . 14 (π‘˜ = (𝑛 + 1) β†’ ((πΉβ€˜π‘˜) ∈ β„‚ ↔ (πΉβ€˜(𝑛 + 1)) ∈ β„‚))
6766rspcv 3608 . . . . . . . . . . . . 13 ((𝑛 + 1) ∈ 𝑍 β†’ (βˆ€π‘˜ ∈ 𝑍 (πΉβ€˜π‘˜) ∈ β„‚ β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚))
6864, 67mpan9 507 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑛 + 1) ∈ 𝑍) β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)
6963, 68syldan 591 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜(𝑛 + 1)) ∈ β„‚)
7059, 60, 69mulassd 11233 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
7170adantr 481 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
72 seqp1 13977 . . . . . . . . . . . 12 (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
7372adantl 482 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1))))
7473oveq2d 7421 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
7574adantr 481 . . . . . . . . 9 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· ((seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›) Β· (πΉβ€˜(𝑛 + 1)))))
7671, 75eqtr4d 2775 . . . . . . . 8 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) Β· (πΉβ€˜(𝑛 + 1))) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))
7756, 58, 763eqtrd 2776 . . . . . . 7 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1))) ∧ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))
7877exp31 420 . . . . . 6 (πœ‘ β†’ (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
7978com12 32 . . . . 5 (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ (πœ‘ β†’ ((seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›)) β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
8079a2d 29 . . . 4 (𝑛 ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ ((πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘›) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘›))) β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜(𝑛 + 1)) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜(𝑛 + 1))))))
8129, 34, 39, 44, 52, 80uzind4 12886 . . 3 (π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ (πœ‘ β†’ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜))))
8281impcom 408 . 2 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (seq𝑀( Β· , 𝐹)β€˜π‘˜) = ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· (seq(𝑁 + 1)( Β· , 𝐹)β€˜π‘˜)))
831, 7, 8, 14, 16, 24, 82climmulc2 15577 1 (πœ‘ β†’ seq𝑀( Β· , 𝐹) ⇝ ((seq𝑀( Β· , 𝐹)β€˜π‘) Β· 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   βŠ† wss 3947   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  1c1 11107   + caddc 11109   Β· cmul 11111  β„€cz 12554  β„€β‰₯cuz 12818  seqcseq 13962   ⇝ cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428
This theorem is referenced by:  ntrivcvg  15839
  Copyright terms: Public domain W3C validator