Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfliminf Structured version   Visualization version   GIF version

Theorem xlimpnfliminf 45816
Description: If a sequence of extended reals converges to +∞ then its superior limit is also +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimpnfliminf.m (𝜑𝑀 ∈ ℤ)
xlimpnfliminf.z 𝑍 = (ℤ𝑀)
xlimpnfliminf.f (𝜑𝐹:𝑍⟶ℝ*)
xlimpnfliminf.c (𝜑𝐹~~>*+∞)
Assertion
Ref Expression
xlimpnfliminf (𝜑 → (lim inf‘𝐹) = +∞)

Proof of Theorem xlimpnfliminf
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimpnfliminf.c . . 3 (𝜑𝐹~~>*+∞)
2 xlimpnfliminf.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 xlimpnfliminf.z . . . 4 𝑍 = (ℤ𝑀)
4 xlimpnfliminf.f . . . 4 (𝜑𝐹:𝑍⟶ℝ*)
52, 3, 4xlimpnfv 45794 . . 3 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
61, 5mpbid 232 . 2 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗))
7 nfcv 2903 . . 3 𝑗𝐹
87, 2, 3, 4liminfpnfuz 45772 . 2 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
96, 8mpbird 257 1 (𝜑 → (lim inf‘𝐹) = +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  wrex 3068   class class class wbr 5148  wf 6559  cfv 6563  cr 11152  +∞cpnf 11290  *cxr 11292  cle 11294  cz 12611  cuz 12876  lim infclsi 45707  ~~>*clsxlim 45774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-xneg 13152  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fl 13829  df-ceil 13830  df-limsup 15504  df-topgen 17490  df-ordt 17548  df-ps 18624  df-tsr 18625  df-top 22916  df-topon 22933  df-bases 22969  df-lm 23253  df-liminf 45708  df-xlim 45775
This theorem is referenced by:  xlimliminflimsup  45818
  Copyright terms: Public domain W3C validator