| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem0h | GIF version | ||
| Description: Auxiliary lemma 8 for gausslemma2d 15713. (Contributed by AV, 9-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| gausslemma2dlem0.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| gausslemma2dlem0.n | ⊢ 𝑁 = (𝐻 − 𝑀) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0h | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0.n | . 2 ⊢ 𝑁 = (𝐻 − 𝑀) | |
| 2 | gausslemma2dlem0.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 3 | gausslemma2dlem0.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 4 | 2, 3 | gausslemma2dlem0b 15694 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 5 | 4 | nnzd 9536 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℤ) |
| 6 | gausslemma2dlem0.m | . . . . . 6 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 7 | 2, 6 | gausslemma2dlem0d 15696 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| 8 | 7 | nn0zd 9535 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 9 | 5, 8 | zsubcld 9542 | . . 3 ⊢ (𝜑 → (𝐻 − 𝑀) ∈ ℤ) |
| 10 | 2, 6, 3 | gausslemma2dlem0g 15699 | . . . 4 ⊢ (𝜑 → 𝑀 ≤ 𝐻) |
| 11 | 4 | nnred 9091 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℝ) |
| 12 | 7 | nn0red 9391 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 13 | 11, 12 | subge0d 8650 | . . . 4 ⊢ (𝜑 → (0 ≤ (𝐻 − 𝑀) ↔ 𝑀 ≤ 𝐻)) |
| 14 | 10, 13 | mpbird 167 | . . 3 ⊢ (𝜑 → 0 ≤ (𝐻 − 𝑀)) |
| 15 | elnn0z 9427 | . . 3 ⊢ ((𝐻 − 𝑀) ∈ ℕ0 ↔ ((𝐻 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝐻 − 𝑀))) | |
| 16 | 9, 14, 15 | sylanbrc 417 | . 2 ⊢ (𝜑 → (𝐻 − 𝑀) ∈ ℕ0) |
| 17 | 1, 16 | eqeltrid 2296 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ∖ cdif 3174 {csn 3646 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 0cc0 7967 1c1 7968 ≤ cle 8150 − cmin 8285 / cdiv 8787 2c2 9129 4c4 9131 ℕ0cn0 9337 ℤcz 9414 ⌊cfl 10455 ℙcprime 12595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-xor 1398 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-2o 6533 df-er 6650 df-en 6858 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fl 10457 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-dvds 12265 df-prm 12596 |
| This theorem is referenced by: gausslemma2dlem0i 15701 gausslemma2dlem6 15711 gausslemma2dlem7 15712 gausslemma2d 15713 |
| Copyright terms: Public domain | W3C validator |