ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnpd GIF version

Theorem metcnpd 13314
Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by Jim Kingdon, 14-Jun-2023.)
Hypotheses
Ref Expression
metcnpd.j (𝜑𝐽 = (MetOpen‘𝐶))
metcnpd.k (𝜑𝐾 = (MetOpen‘𝐷))
metcnpd.c (𝜑𝐶 ∈ (∞Met‘𝑋))
metcnpd.d (𝜑𝐷 ∈ (∞Met‘𝑌))
metcnpd.p (𝜑𝑃𝑋)
Assertion
Ref Expression
metcnpd (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Distinct variable groups:   𝑤,𝐶,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝑤,𝐹,𝑦,𝑧   𝑤,𝑃,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧   𝑤,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)   𝐽(𝑦,𝑧,𝑤)   𝐾(𝑦,𝑧,𝑤)

Proof of Theorem metcnpd
StepHypRef Expression
1 metcnpd.j . . . . 5 (𝜑𝐽 = (MetOpen‘𝐶))
2 metcnpd.k . . . . 5 (𝜑𝐾 = (MetOpen‘𝐷))
31, 2oveq12d 5871 . . . 4 (𝜑 → (𝐽 CnP 𝐾) = ((MetOpen‘𝐶) CnP (MetOpen‘𝐷)))
43fveq1d 5498 . . 3 (𝜑 → ((𝐽 CnP 𝐾)‘𝑃) = (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃))
54eleq2d 2240 . 2 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃)))
6 metcnpd.c . . 3 (𝜑𝐶 ∈ (∞Met‘𝑋))
7 metcnpd.d . . 3 (𝜑𝐷 ∈ (∞Met‘𝑌))
8 metcnpd.p . . 3 (𝜑𝑃𝑋)
9 eqid 2170 . . . 4 (MetOpen‘𝐶) = (MetOpen‘𝐶)
10 eqid 2170 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
119, 10metcnp 13306 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
126, 7, 8, 11syl3anc 1233 . 2 (𝜑 → (𝐹 ∈ (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
135, 12bitrd 187 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449   class class class wbr 3989  wf 5194  cfv 5198  (class class class)co 5853   < clt 7954  +crp 9610  ∞Metcxmet 12774  MetOpencmopn 12779   CnP ccnp 12980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-cnp 12983
This theorem is referenced by:  cnplimcim  13430  limccnpcntop  13438
  Copyright terms: Public domain W3C validator