ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnpd GIF version

Theorem metcnpd 14840
Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by Jim Kingdon, 14-Jun-2023.)
Hypotheses
Ref Expression
metcnpd.j (𝜑𝐽 = (MetOpen‘𝐶))
metcnpd.k (𝜑𝐾 = (MetOpen‘𝐷))
metcnpd.c (𝜑𝐶 ∈ (∞Met‘𝑋))
metcnpd.d (𝜑𝐷 ∈ (∞Met‘𝑌))
metcnpd.p (𝜑𝑃𝑋)
Assertion
Ref Expression
metcnpd (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Distinct variable groups:   𝑤,𝐶,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝑤,𝐹,𝑦,𝑧   𝑤,𝑃,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧   𝑤,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)   𝐽(𝑦,𝑧,𝑤)   𝐾(𝑦,𝑧,𝑤)

Proof of Theorem metcnpd
StepHypRef Expression
1 metcnpd.j . . . . 5 (𝜑𝐽 = (MetOpen‘𝐶))
2 metcnpd.k . . . . 5 (𝜑𝐾 = (MetOpen‘𝐷))
31, 2oveq12d 5943 . . . 4 (𝜑 → (𝐽 CnP 𝐾) = ((MetOpen‘𝐶) CnP (MetOpen‘𝐷)))
43fveq1d 5563 . . 3 (𝜑 → ((𝐽 CnP 𝐾)‘𝑃) = (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃))
54eleq2d 2266 . 2 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃)))
6 metcnpd.c . . 3 (𝜑𝐶 ∈ (∞Met‘𝑋))
7 metcnpd.d . . 3 (𝜑𝐷 ∈ (∞Met‘𝑌))
8 metcnpd.p . . 3 (𝜑𝑃𝑋)
9 eqid 2196 . . . 4 (MetOpen‘𝐶) = (MetOpen‘𝐶)
10 eqid 2196 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
119, 10metcnp 14832 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
126, 7, 8, 11syl3anc 1249 . 2 (𝜑 → (𝐹 ∈ (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
135, 12bitrd 188 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5925   < clt 8078  +crp 9745  ∞Metcxmet 14168  MetOpencmopn 14173   CnP ccnp 14506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-cnp 14509
This theorem is referenced by:  cnplimcim  14987  limccnpcntop  14995
  Copyright terms: Public domain W3C validator