ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnpd GIF version

Theorem metcnpd 15188
Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by Jim Kingdon, 14-Jun-2023.)
Hypotheses
Ref Expression
metcnpd.j (𝜑𝐽 = (MetOpen‘𝐶))
metcnpd.k (𝜑𝐾 = (MetOpen‘𝐷))
metcnpd.c (𝜑𝐶 ∈ (∞Met‘𝑋))
metcnpd.d (𝜑𝐷 ∈ (∞Met‘𝑌))
metcnpd.p (𝜑𝑃𝑋)
Assertion
Ref Expression
metcnpd (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Distinct variable groups:   𝑤,𝐶,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝑤,𝐹,𝑦,𝑧   𝑤,𝑃,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧   𝑤,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)   𝐽(𝑦,𝑧,𝑤)   𝐾(𝑦,𝑧,𝑤)

Proof of Theorem metcnpd
StepHypRef Expression
1 metcnpd.j . . . . 5 (𝜑𝐽 = (MetOpen‘𝐶))
2 metcnpd.k . . . . 5 (𝜑𝐾 = (MetOpen‘𝐷))
31, 2oveq12d 6018 . . . 4 (𝜑 → (𝐽 CnP 𝐾) = ((MetOpen‘𝐶) CnP (MetOpen‘𝐷)))
43fveq1d 5628 . . 3 (𝜑 → ((𝐽 CnP 𝐾)‘𝑃) = (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃))
54eleq2d 2299 . 2 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃)))
6 metcnpd.c . . 3 (𝜑𝐶 ∈ (∞Met‘𝑋))
7 metcnpd.d . . 3 (𝜑𝐷 ∈ (∞Met‘𝑌))
8 metcnpd.p . . 3 (𝜑𝑃𝑋)
9 eqid 2229 . . . 4 (MetOpen‘𝐶) = (MetOpen‘𝐶)
10 eqid 2229 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
119, 10metcnp 15180 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
126, 7, 8, 11syl3anc 1271 . 2 (𝜑 → (𝐹 ∈ (((MetOpen‘𝐶) CnP (MetOpen‘𝐷))‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
135, 12bitrd 188 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509   class class class wbr 4082  wf 5313  cfv 5317  (class class class)co 6000   < clt 8177  +crp 9845  ∞Metcxmet 14494  MetOpencmopn 14499   CnP ccnp 14854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-cnp 14857
This theorem is referenced by:  cnplimcim  15335  limccnpcntop  15343
  Copyright terms: Public domain W3C validator