Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1rrg Structured version   Visualization version   GIF version

Theorem 1rrg 33266
Description: The multiplicative identity is a left-regular element. (Contributed by Thierry Arnoux, 6-May-2025.)
Hypotheses
Ref Expression
1rrg.1 1 = (1r𝑅)
1rrg.e 𝐸 = (RLReg‘𝑅)
1rrg.r (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
1rrg (𝜑1𝐸)

Proof of Theorem 1rrg
StepHypRef Expression
1 1rrg.r . 2 (𝜑𝑅 ∈ Ring)
2 1rrg.e . . . 4 𝐸 = (RLReg‘𝑅)
3 eqid 2734 . . . 4 (Unit‘𝑅) = (Unit‘𝑅)
42, 3unitrrg 20719 . . 3 (𝑅 ∈ Ring → (Unit‘𝑅) ⊆ 𝐸)
5 1rrg.1 . . . 4 1 = (1r𝑅)
63, 51unit 20390 . . 3 (𝑅 ∈ Ring → 1 ∈ (Unit‘𝑅))
74, 6sseldd 3995 . 2 (𝑅 ∈ Ring → 1𝐸)
81, 7syl 17 1 (𝜑1𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  cfv 6562  1rcur 20198  Ringcrg 20250  Unitcui 20371  RLRegcrlreg 20707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-rlreg 20710
This theorem is referenced by:  rrgsubm  33267  fracerl  33287  fracfld  33289
  Copyright terms: Public domain W3C validator