Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccat2s1p2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ccat2s1p2 14427 as of 20-Jan-2024. Extract the second of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ccat2s1p2OLD | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cl 14398 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈“𝑋”〉 ∈ Word 𝑉) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈“𝑋”〉 ∈ Word 𝑉) |
3 | s1cl 14398 | . . . 4 ⊢ (𝑌 ∈ 𝑉 → 〈“𝑌”〉 ∈ Word 𝑉) | |
4 | 3 | adantl 482 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈“𝑌”〉 ∈ Word 𝑉) |
5 | 1z 12443 | . . . . . 6 ⊢ 1 ∈ ℤ | |
6 | 2z 12445 | . . . . . 6 ⊢ 2 ∈ ℤ | |
7 | 1lt2 12237 | . . . . . 6 ⊢ 1 < 2 | |
8 | fzolb 13486 | . . . . . 6 ⊢ (1 ∈ (1..^2) ↔ (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 < 2)) | |
9 | 5, 6, 7, 8 | mpbir3an 1340 | . . . . 5 ⊢ 1 ∈ (1..^2) |
10 | s1len 14402 | . . . . . 6 ⊢ (♯‘〈“𝑋”〉) = 1 | |
11 | s1len 14402 | . . . . . . . 8 ⊢ (♯‘〈“𝑌”〉) = 1 | |
12 | 10, 11 | oveq12i 7341 | . . . . . . 7 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = (1 + 1) |
13 | 1p1e2 12191 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
14 | 12, 13 | eqtri 2764 | . . . . . 6 ⊢ ((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)) = 2 |
15 | 10, 14 | oveq12i 7341 | . . . . 5 ⊢ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) = (1..^2) |
16 | 9, 15 | eleqtrri 2836 | . . . 4 ⊢ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉))) |
17 | 16 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)))) |
18 | ccatval2 14374 | . . 3 ⊢ ((〈“𝑋”〉 ∈ Word 𝑉 ∧ 〈“𝑌”〉 ∈ Word 𝑉 ∧ 1 ∈ ((♯‘〈“𝑋”〉)..^((♯‘〈“𝑋”〉) + (♯‘〈“𝑌”〉)))) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉)))) | |
19 | 2, 4, 17, 18 | syl3anc 1370 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉)))) |
20 | 10 | oveq2i 7340 | . . . . . . 7 ⊢ (1 − (♯‘〈“𝑋”〉)) = (1 − 1) |
21 | 1m1e0 12138 | . . . . . . 7 ⊢ (1 − 1) = 0 | |
22 | 20, 21 | eqtri 2764 | . . . . . 6 ⊢ (1 − (♯‘〈“𝑋”〉)) = 0 |
23 | 22 | a1i 11 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → (1 − (♯‘〈“𝑋”〉)) = 0) |
24 | 23 | fveq2d 6823 | . . . 4 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) = (〈“𝑌”〉‘0)) |
25 | s1fv 14406 | . . . 4 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑌”〉‘0) = 𝑌) | |
26 | 24, 25 | eqtrd 2776 | . . 3 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) = 𝑌) |
27 | 26 | adantl 482 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑌”〉‘(1 − (♯‘〈“𝑋”〉))) = 𝑌) |
28 | 19, 27 | eqtrd 2776 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((〈“𝑋”〉 ++ 〈“𝑌”〉)‘1) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 0cc0 10964 1c1 10965 + caddc 10967 < clt 11102 − cmin 11298 2c2 12121 ℤcz 12412 ..^cfzo 13475 ♯chash 14137 Word cword 14309 ++ cconcat 14365 〈“cs1 14391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-fzo 13476 df-hash 14138 df-word 14310 df-concat 14366 df-s1 14392 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |