Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1pfxeqbi Structured version   Visualization version   GIF version

Theorem ccats1pfxeqbi 14104
 Description: A word is a prefix of a word with length greater by 1 than the first word iff the second word is the first word concatenated with the last symbol of the second word. (Contributed by AV, 24-Oct-2018.) (Revised by AV, 10-May-2020.)
Assertion
Ref Expression
ccats1pfxeqbi ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) ↔ 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))

Proof of Theorem ccats1pfxeqbi
StepHypRef Expression
1 ccats1pfxeq 14076 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
2 simp1 1133 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑊 ∈ Word 𝑉)
3 lencl 13885 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
4 nn0p1nn 11933 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) + 1) ∈ ℕ)
53, 4syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) + 1) ∈ ℕ)
653ad2ant1 1130 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ((♯‘𝑊) + 1) ∈ ℕ)
7 3simpc 1147 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)))
8 lswlgt0cl 13921 . . . . . . 7 ((((♯‘𝑊) + 1) ∈ ℕ ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (lastS‘𝑈) ∈ 𝑉)
96, 7, 8syl2anc 587 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (lastS‘𝑈) ∈ 𝑉)
109s1cld 13957 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ⟨“(lastS‘𝑈)”⟩ ∈ Word 𝑉)
11 eqidd 2825 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (♯‘𝑊) = (♯‘𝑊))
12 pfxccatid 14103 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ⟨“(lastS‘𝑈)”⟩ ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)) = 𝑊)
1312eqcomd 2830 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ⟨“(lastS‘𝑈)”⟩ ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) → 𝑊 = ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)))
142, 10, 11, 13syl3anc 1368 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑊 = ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)))
15 oveq1 7156 . . . . 5 (𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) → (𝑈 prefix (♯‘𝑊)) = ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)))
1615eqcomd 2830 . . . 4 (𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) → ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)) = (𝑈 prefix (♯‘𝑊)))
1714, 16sylan9eq 2879 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) ∧ 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)) → 𝑊 = (𝑈 prefix (♯‘𝑊)))
1817ex 416 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) → 𝑊 = (𝑈 prefix (♯‘𝑊))))
191, 18impbid 215 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) ↔ 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ‘cfv 6343  (class class class)co 7149  1c1 10536   + caddc 10538  ℕcn 11634  ℕ0cn0 11894  ♯chash 13695  Word cword 13866  lastSclsw 13914   ++ cconcat 13922  ⟨“cs1 13949   prefix cpfx 14032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator