MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccats1pfxeqbi Structured version   Visualization version   GIF version

Theorem ccats1pfxeqbi 14436
Description: A word is a prefix of a word with length greater by 1 than the first word iff the second word is the first word concatenated with the last symbol of the second word. (Contributed by AV, 24-Oct-2018.) (Revised by AV, 10-May-2020.)
Assertion
Ref Expression
ccats1pfxeqbi ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) ↔ 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))

Proof of Theorem ccats1pfxeqbi
StepHypRef Expression
1 ccats1pfxeq 14408 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
2 simp1 1134 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑊 ∈ Word 𝑉)
3 lencl 14217 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
4 nn0p1nn 12255 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) + 1) ∈ ℕ)
53, 4syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) + 1) ∈ ℕ)
653ad2ant1 1131 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ((♯‘𝑊) + 1) ∈ ℕ)
7 3simpc 1148 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)))
8 lswlgt0cl 14253 . . . . . . 7 ((((♯‘𝑊) + 1) ∈ ℕ ∧ (𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1))) → (lastS‘𝑈) ∈ 𝑉)
96, 7, 8syl2anc 583 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (lastS‘𝑈) ∈ 𝑉)
109s1cld 14289 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → ⟨“(lastS‘𝑈)”⟩ ∈ Word 𝑉)
11 eqidd 2740 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (♯‘𝑊) = (♯‘𝑊))
12 pfxccatid 14435 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ⟨“(lastS‘𝑈)”⟩ ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)) = 𝑊)
1312eqcomd 2745 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ⟨“(lastS‘𝑈)”⟩ ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) → 𝑊 = ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)))
142, 10, 11, 13syl3anc 1369 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → 𝑊 = ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)))
15 oveq1 7275 . . . . 5 (𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) → (𝑈 prefix (♯‘𝑊)) = ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)))
1615eqcomd 2745 . . . 4 (𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) → ((𝑊 ++ ⟨“(lastS‘𝑈)”⟩) prefix (♯‘𝑊)) = (𝑈 prefix (♯‘𝑊)))
1714, 16sylan9eq 2799 . . 3 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) ∧ 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)) → 𝑊 = (𝑈 prefix (♯‘𝑊)))
1817ex 412 . 2 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩) → 𝑊 = (𝑈 prefix (♯‘𝑊))))
191, 18impbid 211 1 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) ↔ 𝑈 = (𝑊 ++ ⟨“(lastS‘𝑈)”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  1c1 10856   + caddc 10858  cn 11956  0cn0 12216  chash 14025  Word cword 14198  lastSclsw 14246   ++ cconcat 14254  ⟨“cs1 14281   prefix cpfx 14364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199  df-lsw 14247  df-concat 14255  df-s1 14282  df-substr 14335  df-pfx 14365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator