Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s2elclwwlknon2 | Structured version Visualization version GIF version |
Description: Sufficient conditions of a doubleton word to represent a closed walk on vertex 𝑋 of length 2. (Contributed by AV, 11-May-2022.) |
Ref | Expression |
---|---|
clwwlknon2.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon2x.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon2x.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
s2elclwwlknon2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2cl 14287 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) | |
2 | 1 | 3adant3 1129 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) |
3 | s2len 14298 | . . . 4 ⊢ (♯‘〈“𝑋𝑌”〉) = 2 | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘〈“𝑋𝑌”〉) = 2) |
5 | s2fv0 14296 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) | |
6 | 5 | adantr 484 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
7 | s2fv1 14297 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) | |
8 | 7 | adantl 485 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘1) = 𝑌) |
9 | 6, 8 | preq12d 4634 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} = {𝑋, 𝑌}) |
10 | 9 | eqcomd 2764 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
11 | 10 | eleq1d 2836 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ({𝑋, 𝑌} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
12 | 11 | biimp3a 1466 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸) |
13 | 6 | 3adant3 1129 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
14 | 4, 12, 13 | 3jca 1125 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
15 | fveqeq2 6667 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((♯‘𝑤) = 2 ↔ (♯‘〈“𝑋𝑌”〉) = 2)) | |
16 | fveq1 6657 | . . . . . 6 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘0) = (〈“𝑋𝑌”〉‘0)) | |
17 | fveq1 6657 | . . . . . 6 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘1) = (〈“𝑋𝑌”〉‘1)) | |
18 | 16, 17 | preq12d 4634 | . . . . 5 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → {(𝑤‘0), (𝑤‘1)} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
19 | 18 | eleq1d 2836 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
20 | 16 | eqeq1d 2760 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((𝑤‘0) = 𝑋 ↔ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
21 | 15, 19, 20 | 3anbi123d 1433 | . . 3 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
22 | clwwlknon2.c | . . . 4 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
23 | clwwlknon2x.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
24 | clwwlknon2x.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
25 | 22, 23, 24 | clwwlknon2x 27987 | . . 3 ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
26 | 21, 25 | elrab2 3605 | . 2 ⊢ (〈“𝑋𝑌”〉 ∈ (𝑋𝐶2) ↔ (〈“𝑋𝑌”〉 ∈ Word 𝑉 ∧ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
27 | 2, 14, 26 | sylanbrc 586 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 {cpr 4524 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 2c2 11729 ♯chash 13740 Word cword 13913 〈“cs2 14250 Vtxcvtx 26888 Edgcedg 26939 ClWWalksNOncclwwlknon 27971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-oadd 8116 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-n0 11935 df-xnn0 12007 df-z 12021 df-uz 12283 df-fz 12940 df-fzo 13083 df-hash 13741 df-word 13914 df-lsw 13962 df-concat 13970 df-s1 13997 df-s2 14257 df-clwwlk 27866 df-clwwlkn 27909 df-clwwlknon 27972 |
This theorem is referenced by: 2clwwlk2clwwlklem 28230 |
Copyright terms: Public domain | W3C validator |