| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s2elclwwlknon2 | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions of a doubleton word to represent a closed walk on vertex 𝑋 of length 2. (Contributed by AV, 11-May-2022.) |
| Ref | Expression |
|---|---|
| clwwlknon2.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
| clwwlknon2x.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| clwwlknon2x.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| s2elclwwlknon2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2cl 14897 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) |
| 3 | s2len 14908 | . . . 4 ⊢ (♯‘〈“𝑋𝑌”〉) = 2 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘〈“𝑋𝑌”〉) = 2) |
| 5 | s2fv0 14906 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
| 7 | s2fv1 14907 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) | |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘1) = 𝑌) |
| 9 | 6, 8 | preq12d 4717 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} = {𝑋, 𝑌}) |
| 10 | 9 | eqcomd 2741 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
| 11 | 10 | eleq1d 2819 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ({𝑋, 𝑌} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
| 12 | 11 | biimp3a 1471 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸) |
| 13 | 6 | 3adant3 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
| 14 | 4, 12, 13 | 3jca 1128 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
| 15 | fveqeq2 6885 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((♯‘𝑤) = 2 ↔ (♯‘〈“𝑋𝑌”〉) = 2)) | |
| 16 | fveq1 6875 | . . . . . 6 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘0) = (〈“𝑋𝑌”〉‘0)) | |
| 17 | fveq1 6875 | . . . . . 6 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘1) = (〈“𝑋𝑌”〉‘1)) | |
| 18 | 16, 17 | preq12d 4717 | . . . . 5 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → {(𝑤‘0), (𝑤‘1)} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
| 19 | 18 | eleq1d 2819 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
| 20 | 16 | eqeq1d 2737 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((𝑤‘0) = 𝑋 ↔ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
| 21 | 15, 19, 20 | 3anbi123d 1438 | . . 3 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
| 22 | clwwlknon2.c | . . . 4 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
| 23 | clwwlknon2x.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 24 | clwwlknon2x.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 25 | 22, 23, 24 | clwwlknon2x 30084 | . . 3 ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
| 26 | 21, 25 | elrab2 3674 | . 2 ⊢ (〈“𝑋𝑌”〉 ∈ (𝑋𝐶2) ↔ (〈“𝑋𝑌”〉 ∈ Word 𝑉 ∧ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
| 27 | 2, 14, 26 | sylanbrc 583 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {cpr 4603 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 2c2 12295 ♯chash 14348 Word cword 14531 〈“cs2 14860 Vtxcvtx 28975 Edgcedg 29026 ClWWalksNOncclwwlknon 30068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-lsw 14581 df-concat 14589 df-s1 14614 df-s2 14867 df-clwwlk 29963 df-clwwlkn 30006 df-clwwlknon 30069 |
| This theorem is referenced by: 2clwwlk2clwwlklem 30327 |
| Copyright terms: Public domain | W3C validator |