Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s2elclwwlknon2 | Structured version Visualization version GIF version |
Description: Sufficient conditions of a doubleton word to represent a closed walk on vertex 𝑋 of length 2. (Contributed by AV, 11-May-2022.) |
Ref | Expression |
---|---|
clwwlknon2.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon2x.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon2x.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
s2elclwwlknon2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2cl 14591 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) | |
2 | 1 | 3adant3 1131 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) |
3 | s2len 14602 | . . . 4 ⊢ (♯‘〈“𝑋𝑌”〉) = 2 | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘〈“𝑋𝑌”〉) = 2) |
5 | s2fv0 14600 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) | |
6 | 5 | adantr 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
7 | s2fv1 14601 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) | |
8 | 7 | adantl 482 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘1) = 𝑌) |
9 | 6, 8 | preq12d 4677 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} = {𝑋, 𝑌}) |
10 | 9 | eqcomd 2744 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
11 | 10 | eleq1d 2823 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ({𝑋, 𝑌} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
12 | 11 | biimp3a 1468 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸) |
13 | 6 | 3adant3 1131 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
14 | 4, 12, 13 | 3jca 1127 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
15 | fveqeq2 6783 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((♯‘𝑤) = 2 ↔ (♯‘〈“𝑋𝑌”〉) = 2)) | |
16 | fveq1 6773 | . . . . . 6 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘0) = (〈“𝑋𝑌”〉‘0)) | |
17 | fveq1 6773 | . . . . . 6 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘1) = (〈“𝑋𝑌”〉‘1)) | |
18 | 16, 17 | preq12d 4677 | . . . . 5 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → {(𝑤‘0), (𝑤‘1)} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
19 | 18 | eleq1d 2823 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
20 | 16 | eqeq1d 2740 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((𝑤‘0) = 𝑋 ↔ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
21 | 15, 19, 20 | 3anbi123d 1435 | . . 3 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
22 | clwwlknon2.c | . . . 4 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
23 | clwwlknon2x.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
24 | clwwlknon2x.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
25 | 22, 23, 24 | clwwlknon2x 28467 | . . 3 ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
26 | 21, 25 | elrab2 3627 | . 2 ⊢ (〈“𝑋𝑌”〉 ∈ (𝑋𝐶2) ↔ (〈“𝑋𝑌”〉 ∈ Word 𝑉 ∧ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
27 | 2, 14, 26 | sylanbrc 583 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {cpr 4563 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 2c2 12028 ♯chash 14044 Word cword 14217 〈“cs2 14554 Vtxcvtx 27366 Edgcedg 27417 ClWWalksNOncclwwlknon 28451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-lsw 14266 df-concat 14274 df-s1 14301 df-s2 14561 df-clwwlk 28346 df-clwwlkn 28389 df-clwwlknon 28452 |
This theorem is referenced by: 2clwwlk2clwwlklem 28710 |
Copyright terms: Public domain | W3C validator |