Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s2elclwwlknon2 | Structured version Visualization version GIF version |
Description: Sufficient conditions of a doubleton word to represent a closed walk on vertex 𝑋 of length 2. (Contributed by AV, 11-May-2022.) |
Ref | Expression |
---|---|
clwwlknon2.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon2x.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon2x.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
s2elclwwlknon2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2cl 14519 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) | |
2 | 1 | 3adant3 1130 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) |
3 | s2len 14530 | . . . 4 ⊢ (♯‘〈“𝑋𝑌”〉) = 2 | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘〈“𝑋𝑌”〉) = 2) |
5 | s2fv0 14528 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) | |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
7 | s2fv1 14529 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) | |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘1) = 𝑌) |
9 | 6, 8 | preq12d 4674 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} = {𝑋, 𝑌}) |
10 | 9 | eqcomd 2744 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
11 | 10 | eleq1d 2823 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ({𝑋, 𝑌} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
12 | 11 | biimp3a 1467 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸) |
13 | 6 | 3adant3 1130 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
14 | 4, 12, 13 | 3jca 1126 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
15 | fveqeq2 6765 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((♯‘𝑤) = 2 ↔ (♯‘〈“𝑋𝑌”〉) = 2)) | |
16 | fveq1 6755 | . . . . . 6 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘0) = (〈“𝑋𝑌”〉‘0)) | |
17 | fveq1 6755 | . . . . . 6 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘1) = (〈“𝑋𝑌”〉‘1)) | |
18 | 16, 17 | preq12d 4674 | . . . . 5 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → {(𝑤‘0), (𝑤‘1)} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
19 | 18 | eleq1d 2823 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
20 | 16 | eqeq1d 2740 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((𝑤‘0) = 𝑋 ↔ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
21 | 15, 19, 20 | 3anbi123d 1434 | . . 3 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
22 | clwwlknon2.c | . . . 4 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
23 | clwwlknon2x.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
24 | clwwlknon2x.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
25 | 22, 23, 24 | clwwlknon2x 28368 | . . 3 ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
26 | 21, 25 | elrab2 3620 | . 2 ⊢ (〈“𝑋𝑌”〉 ∈ (𝑋𝐶2) ↔ (〈“𝑋𝑌”〉 ∈ Word 𝑉 ∧ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
27 | 2, 14, 26 | sylanbrc 582 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cpr 4560 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 2c2 11958 ♯chash 13972 Word cword 14145 〈“cs2 14482 Vtxcvtx 27269 Edgcedg 27320 ClWWalksNOncclwwlknon 28352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-s2 14489 df-clwwlk 28247 df-clwwlkn 28290 df-clwwlknon 28353 |
This theorem is referenced by: 2clwwlk2clwwlklem 28611 |
Copyright terms: Public domain | W3C validator |