MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2elclwwlknon2 Structured version   Visualization version   GIF version

Theorem s2elclwwlknon2 28877
Description: Sufficient conditions of a doubleton word to represent a closed walk on vertex 𝑋 of length 2. (Contributed by AV, 11-May-2022.)
Hypotheses
Ref Expression
clwwlknon2.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon2x.v 𝑉 = (Vtx‘𝐺)
clwwlknon2x.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
s2elclwwlknon2 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ⟨“𝑋𝑌”⟩ ∈ (𝑋𝐶2))

Proof of Theorem s2elclwwlknon2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 s2cl 14725 . . 3 ((𝑋𝑉𝑌𝑉) → ⟨“𝑋𝑌”⟩ ∈ Word 𝑉)
213adant3 1132 . 2 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ⟨“𝑋𝑌”⟩ ∈ Word 𝑉)
3 s2len 14736 . . . 4 (♯‘⟨“𝑋𝑌”⟩) = 2
43a1i 11 . . 3 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘⟨“𝑋𝑌”⟩) = 2)
5 s2fv0 14734 . . . . . . . 8 (𝑋𝑉 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
65adantr 481 . . . . . . 7 ((𝑋𝑉𝑌𝑉) → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
7 s2fv1 14735 . . . . . . . 8 (𝑌𝑉 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
87adantl 482 . . . . . . 7 ((𝑋𝑉𝑌𝑉) → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
96, 8preq12d 4700 . . . . . 6 ((𝑋𝑉𝑌𝑉) → {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} = {𝑋, 𝑌})
109eqcomd 2743 . . . . 5 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} = {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)})
1110eleq1d 2822 . . . 4 ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 ↔ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸))
1211biimp3a 1469 . . 3 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸)
1363adant3 1132 . . 3 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
144, 12, 133jca 1128 . 2 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘⟨“𝑋𝑌”⟩) = 2 ∧ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸 ∧ (⟨“𝑋𝑌”⟩‘0) = 𝑋))
15 fveqeq2 6848 . . . 4 (𝑤 = ⟨“𝑋𝑌”⟩ → ((♯‘𝑤) = 2 ↔ (♯‘⟨“𝑋𝑌”⟩) = 2))
16 fveq1 6838 . . . . . 6 (𝑤 = ⟨“𝑋𝑌”⟩ → (𝑤‘0) = (⟨“𝑋𝑌”⟩‘0))
17 fveq1 6838 . . . . . 6 (𝑤 = ⟨“𝑋𝑌”⟩ → (𝑤‘1) = (⟨“𝑋𝑌”⟩‘1))
1816, 17preq12d 4700 . . . . 5 (𝑤 = ⟨“𝑋𝑌”⟩ → {(𝑤‘0), (𝑤‘1)} = {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)})
1918eleq1d 2822 . . . 4 (𝑤 = ⟨“𝑋𝑌”⟩ → ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸))
2016eqeq1d 2739 . . . 4 (𝑤 = ⟨“𝑋𝑌”⟩ → ((𝑤‘0) = 𝑋 ↔ (⟨“𝑋𝑌”⟩‘0) = 𝑋))
2115, 19, 203anbi123d 1436 . . 3 (𝑤 = ⟨“𝑋𝑌”⟩ → (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘⟨“𝑋𝑌”⟩) = 2 ∧ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸 ∧ (⟨“𝑋𝑌”⟩‘0) = 𝑋)))
22 clwwlknon2.c . . . 4 𝐶 = (ClWWalksNOn‘𝐺)
23 clwwlknon2x.v . . . 4 𝑉 = (Vtx‘𝐺)
24 clwwlknon2x.e . . . 4 𝐸 = (Edg‘𝐺)
2522, 23, 24clwwlknon2x 28876 . . 3 (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)}
2621, 25elrab2 3646 . 2 (⟨“𝑋𝑌”⟩ ∈ (𝑋𝐶2) ↔ (⟨“𝑋𝑌”⟩ ∈ Word 𝑉 ∧ ((♯‘⟨“𝑋𝑌”⟩) = 2 ∧ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸 ∧ (⟨“𝑋𝑌”⟩‘0) = 𝑋)))
272, 14, 26sylanbrc 583 1 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ⟨“𝑋𝑌”⟩ ∈ (𝑋𝐶2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cpr 4586  cfv 6493  (class class class)co 7351  0cc0 11009  1c1 11010  2c2 12166  chash 14184  Word cword 14356  ⟨“cs2 14688  Vtxcvtx 27776  Edgcedg 27827  ClWWalksNOncclwwlknon 28860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-1o 8404  df-oadd 8408  df-er 8606  df-map 8725  df-en 8842  df-dom 8843  df-sdom 8844  df-fin 8845  df-card 9833  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-nn 12112  df-2 12174  df-n0 12372  df-xnn0 12444  df-z 12458  df-uz 12722  df-fz 13379  df-fzo 13522  df-hash 14185  df-word 14357  df-lsw 14405  df-concat 14413  df-s1 14438  df-s2 14695  df-clwwlk 28755  df-clwwlkn 28798  df-clwwlknon 28861
This theorem is referenced by:  2clwwlk2clwwlklem  29119
  Copyright terms: Public domain W3C validator