MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s2elclwwlknon2 Structured version   Visualization version   GIF version

Theorem s2elclwwlknon2 27272
Description: Sufficient conditions of a doubleton word to represent a closed walk on vertex 𝑋 of length 2. (Contributed by AV, 11-May-2022.)
Hypotheses
Ref Expression
clwwlknon2.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon2x.v 𝑉 = (Vtx‘𝐺)
clwwlknon2x.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
s2elclwwlknon2 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ⟨“𝑋𝑌”⟩ ∈ (𝑋𝐶2))

Proof of Theorem s2elclwwlknon2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 s2cl 13825 . . 3 ((𝑋𝑉𝑌𝑉) → ⟨“𝑋𝑌”⟩ ∈ Word 𝑉)
213adant3 1126 . 2 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ⟨“𝑋𝑌”⟩ ∈ Word 𝑉)
3 s2len 13836 . . . 4 (♯‘⟨“𝑋𝑌”⟩) = 2
43a1i 11 . . 3 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘⟨“𝑋𝑌”⟩) = 2)
5 s2fv0 13834 . . . . . . . 8 (𝑋𝑉 → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
65adantr 466 . . . . . . 7 ((𝑋𝑉𝑌𝑉) → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
7 s2fv1 13835 . . . . . . . 8 (𝑌𝑉 → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
87adantl 467 . . . . . . 7 ((𝑋𝑉𝑌𝑉) → (⟨“𝑋𝑌”⟩‘1) = 𝑌)
96, 8preq12d 4412 . . . . . 6 ((𝑋𝑉𝑌𝑉) → {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} = {𝑋, 𝑌})
109eqcomd 2777 . . . . 5 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} = {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)})
1110eleq1d 2835 . . . 4 ((𝑋𝑉𝑌𝑉) → ({𝑋, 𝑌} ∈ 𝐸 ↔ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸))
1211biimp3a 1580 . . 3 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸)
1363adant3 1126 . . 3 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (⟨“𝑋𝑌”⟩‘0) = 𝑋)
144, 12, 133jca 1122 . 2 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘⟨“𝑋𝑌”⟩) = 2 ∧ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸 ∧ (⟨“𝑋𝑌”⟩‘0) = 𝑋))
15 clwwlknon2.c . . . . 5 𝐶 = (ClWWalksNOn‘𝐺)
16 clwwlknon2x.v . . . . 5 𝑉 = (Vtx‘𝐺)
17 clwwlknon2x.e . . . . 5 𝐸 = (Edg‘𝐺)
1815, 16, 17clwwlknon2x 27271 . . . 4 (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)}
1918eleq2i 2842 . . 3 (⟨“𝑋𝑌”⟩ ∈ (𝑋𝐶2) ↔ ⟨“𝑋𝑌”⟩ ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)})
20 fveq2 6330 . . . . . 6 (𝑤 = ⟨“𝑋𝑌”⟩ → (♯‘𝑤) = (♯‘⟨“𝑋𝑌”⟩))
2120eqeq1d 2773 . . . . 5 (𝑤 = ⟨“𝑋𝑌”⟩ → ((♯‘𝑤) = 2 ↔ (♯‘⟨“𝑋𝑌”⟩) = 2))
22 fveq1 6329 . . . . . . 7 (𝑤 = ⟨“𝑋𝑌”⟩ → (𝑤‘0) = (⟨“𝑋𝑌”⟩‘0))
23 fveq1 6329 . . . . . . 7 (𝑤 = ⟨“𝑋𝑌”⟩ → (𝑤‘1) = (⟨“𝑋𝑌”⟩‘1))
2422, 23preq12d 4412 . . . . . 6 (𝑤 = ⟨“𝑋𝑌”⟩ → {(𝑤‘0), (𝑤‘1)} = {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)})
2524eleq1d 2835 . . . . 5 (𝑤 = ⟨“𝑋𝑌”⟩ → ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸))
2622eqeq1d 2773 . . . . 5 (𝑤 = ⟨“𝑋𝑌”⟩ → ((𝑤‘0) = 𝑋 ↔ (⟨“𝑋𝑌”⟩‘0) = 𝑋))
2721, 25, 263anbi123d 1547 . . . 4 (𝑤 = ⟨“𝑋𝑌”⟩ → (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘⟨“𝑋𝑌”⟩) = 2 ∧ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸 ∧ (⟨“𝑋𝑌”⟩‘0) = 𝑋)))
2827elrab 3515 . . 3 (⟨“𝑋𝑌”⟩ ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} ↔ (⟨“𝑋𝑌”⟩ ∈ Word 𝑉 ∧ ((♯‘⟨“𝑋𝑌”⟩) = 2 ∧ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸 ∧ (⟨“𝑋𝑌”⟩‘0) = 𝑋)))
2919, 28bitri 264 . 2 (⟨“𝑋𝑌”⟩ ∈ (𝑋𝐶2) ↔ (⟨“𝑋𝑌”⟩ ∈ Word 𝑉 ∧ ((♯‘⟨“𝑋𝑌”⟩) = 2 ∧ {(⟨“𝑋𝑌”⟩‘0), (⟨“𝑋𝑌”⟩‘1)} ∈ 𝐸 ∧ (⟨“𝑋𝑌”⟩‘0) = 𝑋)))
302, 14, 29sylanbrc 572 1 ((𝑋𝑉𝑌𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ⟨“𝑋𝑌”⟩ ∈ (𝑋𝐶2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  {crab 3065  {cpr 4318  cfv 6029  (class class class)co 6791  0cc0 10136  1c1 10137  2c2 11270  chash 13314  Word cword 13480  ⟨“cs2 13788  Vtxcvtx 26088  Edgcedg 26153  ClWWalksNOncclwwlknon 27252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-n0 11493  df-xnn0 11564  df-z 11578  df-uz 11887  df-fz 12527  df-fzo 12667  df-hash 13315  df-word 13488  df-lsw 13489  df-concat 13490  df-s1 13491  df-s2 13795  df-clwwlk 27125  df-clwwlkn 27169  df-clwwlknon 27253
This theorem is referenced by:  2clwwlk2clwwlklem  27523
  Copyright terms: Public domain W3C validator