![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s2elclwwlknon2 | Structured version Visualization version GIF version |
Description: Sufficient conditions of a doubleton word to represent a closed walk on vertex 𝑋 of length 2. (Contributed by AV, 11-May-2022.) |
Ref | Expression |
---|---|
clwwlknon2.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon2x.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon2x.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
s2elclwwlknon2 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2cl 14035 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) | |
2 | 1 | 3adant3 1123 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ Word 𝑉) |
3 | s2len 14046 | . . . 4 ⊢ (♯‘〈“𝑋𝑌”〉) = 2 | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (♯‘〈“𝑋𝑌”〉) = 2) |
5 | s2fv0 14044 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → (〈“𝑋𝑌”〉‘0) = 𝑋) | |
6 | 5 | adantr 474 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
7 | s2fv1 14045 | . . . . . . . 8 ⊢ (𝑌 ∈ 𝑉 → (〈“𝑋𝑌”〉‘1) = 𝑌) | |
8 | 7 | adantl 475 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋𝑌”〉‘1) = 𝑌) |
9 | 6, 8 | preq12d 4508 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} = {𝑋, 𝑌}) |
10 | 9 | eqcomd 2784 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
11 | 10 | eleq1d 2844 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ({𝑋, 𝑌} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
12 | 11 | biimp3a 1542 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸) |
13 | 6 | 3adant3 1123 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → (〈“𝑋𝑌”〉‘0) = 𝑋) |
14 | 4, 12, 13 | 3jca 1119 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
15 | clwwlknon2.c | . . . . 5 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
16 | clwwlknon2x.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
17 | clwwlknon2x.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
18 | 15, 16, 17 | clwwlknon2x 27522 | . . . 4 ⊢ (𝑋𝐶2) = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} |
19 | 18 | eleq2i 2851 | . . 3 ⊢ (〈“𝑋𝑌”〉 ∈ (𝑋𝐶2) ↔ 〈“𝑋𝑌”〉 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)}) |
20 | fveqeq2 6457 | . . . . 5 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((♯‘𝑤) = 2 ↔ (♯‘〈“𝑋𝑌”〉) = 2)) | |
21 | fveq1 6447 | . . . . . . 7 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘0) = (〈“𝑋𝑌”〉‘0)) | |
22 | fveq1 6447 | . . . . . . 7 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (𝑤‘1) = (〈“𝑋𝑌”〉‘1)) | |
23 | 21, 22 | preq12d 4508 | . . . . . 6 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → {(𝑤‘0), (𝑤‘1)} = {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)}) |
24 | 23 | eleq1d 2844 | . . . . 5 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ↔ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸)) |
25 | 21 | eqeq1d 2780 | . . . . 5 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → ((𝑤‘0) = 𝑋 ↔ (〈“𝑋𝑌”〉‘0) = 𝑋)) |
26 | 20, 24, 25 | 3anbi123d 1509 | . . . 4 ⊢ (𝑤 = 〈“𝑋𝑌”〉 → (((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋) ↔ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
27 | 26 | elrab 3572 | . . 3 ⊢ (〈“𝑋𝑌”〉 ∈ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝐸 ∧ (𝑤‘0) = 𝑋)} ↔ (〈“𝑋𝑌”〉 ∈ Word 𝑉 ∧ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
28 | 19, 27 | bitri 267 | . 2 ⊢ (〈“𝑋𝑌”〉 ∈ (𝑋𝐶2) ↔ (〈“𝑋𝑌”〉 ∈ Word 𝑉 ∧ ((♯‘〈“𝑋𝑌”〉) = 2 ∧ {(〈“𝑋𝑌”〉‘0), (〈“𝑋𝑌”〉‘1)} ∈ 𝐸 ∧ (〈“𝑋𝑌”〉‘0) = 𝑋))) |
29 | 2, 14, 28 | sylanbrc 578 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ {𝑋, 𝑌} ∈ 𝐸) → 〈“𝑋𝑌”〉 ∈ (𝑋𝐶2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {crab 3094 {cpr 4400 ‘cfv 6137 (class class class)co 6924 0cc0 10274 1c1 10275 2c2 11435 ♯chash 13441 Word cword 13605 〈“cs2 13998 Vtxcvtx 26361 Edgcedg 26412 ClWWalksNOncclwwlknon 27506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-n0 11648 df-xnn0 11720 df-z 11734 df-uz 11998 df-fz 12649 df-fzo 12790 df-hash 13442 df-word 13606 df-lsw 13659 df-concat 13667 df-s1 13692 df-s2 14005 df-clwwlk 27379 df-clwwlkn 27431 df-clwwlknon 27507 |
This theorem is referenced by: 2clwwlk2clwwlklem 27774 |
Copyright terms: Public domain | W3C validator |