| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coprmdvds1 | Structured version Visualization version GIF version | ||
| Description: If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.) |
| Ref | Expression |
|---|---|
| coprmdvds1 | ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coprmgcdb 16673 | . . 3 ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) ↔ (𝐹 gcd 𝐺) = 1)) | |
| 2 | breq1 5127 | . . . . . . . . 9 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐹 ↔ 𝐼 ∥ 𝐹)) | |
| 3 | breq1 5127 | . . . . . . . . 9 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐺 ↔ 𝐼 ∥ 𝐺)) | |
| 4 | 2, 3 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑖 = 𝐼 → ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) ↔ (𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))) |
| 5 | eqeq1 2740 | . . . . . . . 8 ⊢ (𝑖 = 𝐼 → (𝑖 = 1 ↔ 𝐼 = 1)) | |
| 6 | 4, 5 | imbi12d 344 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) ↔ ((𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1))) |
| 7 | 6 | rspcv 3602 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) → ((𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1))) |
| 8 | 7 | com23 86 | . . . . 5 ⊢ (𝐼 ∈ ℕ → ((𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) → 𝐼 = 1))) |
| 9 | 8 | 3impib 1116 | . . . 4 ⊢ ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) → 𝐼 = 1)) |
| 10 | 9 | com12 32 | . . 3 ⊢ (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1)) |
| 11 | 1, 10 | biimtrrdi 254 | . 2 ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → ((𝐹 gcd 𝐺) = 1 → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1))) |
| 12 | 11 | 3impia 1117 | 1 ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 class class class wbr 5124 (class class class)co 7410 1c1 11135 ℕcn 12245 ∥ cdvds 16277 gcd cgcd 16518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-gcd 16519 |
| This theorem is referenced by: prmdvdsfmtnof1lem2 47566 |
| Copyright terms: Public domain | W3C validator |