| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coprmdvds1 | Structured version Visualization version GIF version | ||
| Description: If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.) |
| Ref | Expression |
|---|---|
| coprmdvds1 | ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coprmgcdb 16560 | . . 3 ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) ↔ (𝐹 gcd 𝐺) = 1)) | |
| 2 | breq1 5092 | . . . . . . . . 9 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐹 ↔ 𝐼 ∥ 𝐹)) | |
| 3 | breq1 5092 | . . . . . . . . 9 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐺 ↔ 𝐼 ∥ 𝐺)) | |
| 4 | 2, 3 | anbi12d 632 | . . . . . . . 8 ⊢ (𝑖 = 𝐼 → ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) ↔ (𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺))) |
| 5 | eqeq1 2735 | . . . . . . . 8 ⊢ (𝑖 = 𝐼 → (𝑖 = 1 ↔ 𝐼 = 1)) | |
| 6 | 4, 5 | imbi12d 344 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) ↔ ((𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1))) |
| 7 | 6 | rspcv 3568 | . . . . . 6 ⊢ (𝐼 ∈ ℕ → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) → ((𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1))) |
| 8 | 7 | com23 86 | . . . . 5 ⊢ (𝐼 ∈ ℕ → ((𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) → 𝐼 = 1))) |
| 9 | 8 | 3impib 1116 | . . . 4 ⊢ ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) → 𝐼 = 1)) |
| 10 | 9 | com12 32 | . . 3 ⊢ (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐹 ∧ 𝑖 ∥ 𝐺) → 𝑖 = 1) → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1)) |
| 11 | 1, 10 | biimtrrdi 254 | . 2 ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → ((𝐹 gcd 𝐺) = 1 → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1))) |
| 12 | 11 | 3impia 1117 | 1 ⊢ ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼 ∥ 𝐹 ∧ 𝐼 ∥ 𝐺) → 𝐼 = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5089 (class class class)co 7346 1c1 11007 ℕcn 12125 ∥ cdvds 16163 gcd cgcd 16405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 |
| This theorem is referenced by: prmdvdsfmtnof1lem2 47684 |
| Copyright terms: Public domain | W3C validator |