MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmdvds1 Structured version   Visualization version   GIF version

Theorem coprmdvds1 16589
Description: If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.)
Assertion
Ref Expression
coprmdvds1 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))

Proof of Theorem coprmdvds1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 coprmgcdb 16586 . . 3 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) ↔ (𝐹 gcd 𝐺) = 1))
2 breq1 5152 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝐹𝐼𝐹))
3 breq1 5152 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝐺𝐼𝐺))
42, 3anbi12d 632 . . . . . . . 8 (𝑖 = 𝐼 → ((𝑖𝐹𝑖𝐺) ↔ (𝐼𝐹𝐼𝐺)))
5 eqeq1 2737 . . . . . . . 8 (𝑖 = 𝐼 → (𝑖 = 1 ↔ 𝐼 = 1))
64, 5imbi12d 345 . . . . . . 7 (𝑖 = 𝐼 → (((𝑖𝐹𝑖𝐺) → 𝑖 = 1) ↔ ((𝐼𝐹𝐼𝐺) → 𝐼 = 1)))
76rspcv 3609 . . . . . 6 (𝐼 ∈ ℕ → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → ((𝐼𝐹𝐼𝐺) → 𝐼 = 1)))
87com23 86 . . . . 5 (𝐼 ∈ ℕ → ((𝐼𝐹𝐼𝐺) → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → 𝐼 = 1)))
983impib 1117 . . . 4 ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → 𝐼 = 1))
109com12 32 . . 3 (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
111, 10syl6bir 254 . 2 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → ((𝐹 gcd 𝐺) = 1 → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1)))
12113impia 1118 1 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062   class class class wbr 5149  (class class class)co 7409  1c1 11111  cn 12212  cdvds 16197   gcd cgcd 16435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-dvds 16198  df-gcd 16436
This theorem is referenced by:  prmdvdsfmtnof1lem2  46253
  Copyright terms: Public domain W3C validator