MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprmdvds1 Structured version   Visualization version   GIF version

Theorem coprmdvds1 16653
Description: If two positive integers are coprime, i.e. their greatest common divisor is 1, the only positive integer that divides both of them is 1. (Contributed by AV, 4-Aug-2021.)
Assertion
Ref Expression
coprmdvds1 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))

Proof of Theorem coprmdvds1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 coprmgcdb 16650 . . 3 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) ↔ (𝐹 gcd 𝐺) = 1))
2 breq1 5156 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝐹𝐼𝐹))
3 breq1 5156 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝐺𝐼𝐺))
42, 3anbi12d 630 . . . . . . . 8 (𝑖 = 𝐼 → ((𝑖𝐹𝑖𝐺) ↔ (𝐼𝐹𝐼𝐺)))
5 eqeq1 2730 . . . . . . . 8 (𝑖 = 𝐼 → (𝑖 = 1 ↔ 𝐼 = 1))
64, 5imbi12d 343 . . . . . . 7 (𝑖 = 𝐼 → (((𝑖𝐹𝑖𝐺) → 𝑖 = 1) ↔ ((𝐼𝐹𝐼𝐺) → 𝐼 = 1)))
76rspcv 3604 . . . . . 6 (𝐼 ∈ ℕ → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → ((𝐼𝐹𝐼𝐺) → 𝐼 = 1)))
87com23 86 . . . . 5 (𝐼 ∈ ℕ → ((𝐼𝐹𝐼𝐺) → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → 𝐼 = 1)))
983impib 1113 . . . 4 ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → 𝐼 = 1))
109com12 32 . . 3 (∀𝑖 ∈ ℕ ((𝑖𝐹𝑖𝐺) → 𝑖 = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
111, 10biimtrrdi 253 . 2 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ) → ((𝐹 gcd 𝐺) = 1 → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1)))
12113impia 1114 1 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051   class class class wbr 5153  (class class class)co 7424  1c1 11159  cn 12264  cdvds 16256   gcd cgcd 16494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-seq 14022  df-exp 14082  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-dvds 16257  df-gcd 16495
This theorem is referenced by:  prmdvdsfmtnof1lem2  47157
  Copyright terms: Public domain W3C validator