Proof of Theorem coprmgcdb
Step | Hyp | Ref
| Expression |
1 | | nnz 12272 |
. . . 4
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
2 | | nnz 12272 |
. . . 4
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
3 | | gcddvds 16138 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
4 | 1, 2, 3 | syl2an 595 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
5 | | simpr 484 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
6 | | gcdnncl 16142 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
7 | 6 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (𝐴 gcd 𝐵) ∈ ℕ) |
8 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 ∥ 𝐴 ↔ (𝐴 gcd 𝐵) ∥ 𝐴)) |
9 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 ∥ 𝐵 ↔ (𝐴 gcd 𝐵) ∥ 𝐵)) |
10 | 8, 9 | anbi12d 630 |
. . . . . . 7
⊢ (𝑖 = (𝐴 gcd 𝐵) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) ↔ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))) |
11 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑖 = (𝐴 gcd 𝐵) → (𝑖 = 1 ↔ (𝐴 gcd 𝐵) = 1)) |
12 | 10, 11 | imbi12d 344 |
. . . . . 6
⊢ (𝑖 = (𝐴 gcd 𝐵) → (((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1))) |
13 | 12 | rspcv 3547 |
. . . . 5
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1))) |
14 | 7, 13 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → (𝐴 gcd 𝐵) = 1))) |
15 | 5, 14 | mpid 44 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → (∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → (𝐴 gcd 𝐵) = 1)) |
16 | 4, 15 | mpdan 683 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) → (𝐴 gcd 𝐵) = 1)) |
17 | | simpl 482 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ)) |
18 | 17 | anim1ci 615 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ))) |
19 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ↔ (𝑖 ∈ ℕ ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈
ℕ))) |
20 | 18, 19 | sylibr 233 |
. . . . . 6
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ)) |
21 | | nndvdslegcd 16140 |
. . . . . 6
⊢ ((𝑖 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵))) |
22 | 20, 21 | syl 17 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 ≤ (𝐴 gcd 𝐵))) |
23 | | breq2 5074 |
. . . . . . . 8
⊢ ((𝐴 gcd 𝐵) = 1 → (𝑖 ≤ (𝐴 gcd 𝐵) ↔ 𝑖 ≤ 1)) |
24 | 23 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) ↔ 𝑖 ≤ 1)) |
25 | | nnge1 11931 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℕ → 1 ≤
𝑖) |
26 | | nnre 11910 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℝ) |
27 | | 1red 10907 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ → 1 ∈
ℝ) |
28 | 26, 27 | letri3d 11047 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ℕ → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖))) |
29 | 28 | biimprd 247 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℕ → ((𝑖 ≤ 1 ∧ 1 ≤ 𝑖) → 𝑖 = 1)) |
30 | 25, 29 | mpan2d 690 |
. . . . . . . 8
⊢ (𝑖 ∈ ℕ → (𝑖 ≤ 1 → 𝑖 = 1)) |
31 | 30 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ 1 → 𝑖 = 1)) |
32 | 24, 31 | sylbid 239 |
. . . . . 6
⊢ (((𝐴 gcd 𝐵) = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) → 𝑖 = 1)) |
33 | 32 | adantll 710 |
. . . . 5
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → (𝑖 ≤ (𝐴 gcd 𝐵) → 𝑖 = 1)) |
34 | 22, 33 | syld 47 |
. . . 4
⊢ ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) ∧ 𝑖 ∈ ℕ) → ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) |
35 | 34 | ralrimiva 3107 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 gcd 𝐵) = 1) → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1)) |
36 | 35 | ex 412 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ∀𝑖 ∈ ℕ ((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1))) |
37 | 16, 36 | impbid 211 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) →
(∀𝑖 ∈ ℕ
((𝑖 ∥ 𝐴 ∧ 𝑖 ∥ 𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1)) |