MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expaddd Structured version   Visualization version   GIF version

Theorem expaddd 14050
Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
expcld.1 (𝜑𝐴 ∈ ℂ)
expcld.2 (𝜑𝑁 ∈ ℕ0)
expaddd.2 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
expaddd (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expaddd
StepHypRef Expression
1 expcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 expaddd.2 . 2 (𝜑𝑀 ∈ ℕ0)
3 expcld.2 . 2 (𝜑𝑁 ∈ ℕ0)
4 expadd 14006 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7341  cc 10999   + caddc 11004   · cmul 11006  0cn0 12376  cexp 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-seq 13904  df-exp 13964
This theorem is referenced by:  binomrisefac  15944  dvdsexp  16234  odzdvds  16702  pcpremul  16750  prmreclem6  16828  psgnghm  21512  plymullem1  26141  quart1lem  26787  log2cnv  26876  mumul  27113  lgsdi  27267  gausslemma2d  27307  lgseisenlem2  27309  lgsquadlem2  27314  lgsquadlem3  27315  ostth2lem1  27551  cos9thpiminplylem1  33787  cos9thpiminplylem2  33788  madjusmdetlem4  33835  oddpwdc  34359  breprexplemc  34637  lcmineqlem3  42064  lcmineqlem21  42082  3lexlogpow5ineq5  42093  dvrelogpow2b  42101  aks4d1p1p4  42104  aks4d1p1p7  42107  aks4d1p1p5  42108  aks4d1p1  42109  aks6d1c1p8  42148  hashscontpow1  42154  2ap1caineq  42178  fltnltalem  42695  3cubeslem3l  42719  3cubeslem3r  42720  jm2.23  43029  itgsinexp  45993  wallispi2lem2  46110  nnpw2pmod  48615  ackval3  48715
  Copyright terms: Public domain W3C validator