| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expaddd | Structured version Visualization version GIF version | ||
| Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of [Gleason] p. 135. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| expcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| expaddd.2 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| expaddd | ⊢ (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | expaddd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 3 | expcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 4 | expadd 14006 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴↑𝑀) · (𝐴↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 + caddc 11004 · cmul 11006 ℕ0cn0 12376 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-exp 13964 |
| This theorem is referenced by: binomrisefac 15944 dvdsexp 16234 odzdvds 16702 pcpremul 16750 prmreclem6 16828 psgnghm 21512 plymullem1 26141 quart1lem 26787 log2cnv 26876 mumul 27113 lgsdi 27267 gausslemma2d 27307 lgseisenlem2 27309 lgsquadlem2 27314 lgsquadlem3 27315 ostth2lem1 27551 cos9thpiminplylem1 33787 cos9thpiminplylem2 33788 madjusmdetlem4 33835 oddpwdc 34359 breprexplemc 34637 lcmineqlem3 42064 lcmineqlem21 42082 3lexlogpow5ineq5 42093 dvrelogpow2b 42101 aks4d1p1p4 42104 aks4d1p1p7 42107 aks4d1p1p5 42108 aks4d1p1 42109 aks6d1c1p8 42148 hashscontpow1 42154 2ap1caineq 42178 fltnltalem 42695 3cubeslem3l 42719 3cubeslem3r 42720 jm2.23 43029 itgsinexp 45993 wallispi2lem2 46110 nnpw2pmod 48615 ackval3 48715 |
| Copyright terms: Public domain | W3C validator |