Step | Hyp | Ref
| Expression |
1 | | ssrab2 3947 |
. . 3
⊢ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ⊆ ℝ |
2 | | negfi 11390 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ∈ Fin) |
3 | 2 | 3adant3 1112 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ∈ Fin) |
4 | | negn0 10870 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ≠ ∅) |
5 | 4 | 3adant2 1111 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ≠ ∅) |
6 | | fimaxre 11385 |
. . 3
⊢ (({𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ⊆ ℝ ∧ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ∈ Fin ∧ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ≠ ∅) → ∃𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) |
7 | 1, 3, 5, 6 | mp3an2i 1445 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
∃𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) |
8 | | negeq 10678 |
. . . . . . . 8
⊢ (𝑟 = 𝑛 → -𝑟 = -𝑛) |
9 | 8 | eleq1d 2851 |
. . . . . . 7
⊢ (𝑟 = 𝑛 → (-𝑟 ∈ 𝐴 ↔ -𝑛 ∈ 𝐴)) |
10 | 9 | elrab 3596 |
. . . . . 6
⊢ (𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} ↔ (𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴)) |
11 | | simpllr 763 |
. . . . . . . 8
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) → -𝑛 ∈ 𝐴) |
12 | | breq1 4932 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑛 → (𝑥 ≤ 𝑦 ↔ -𝑛 ≤ 𝑦)) |
13 | 12 | ralbidv 3148 |
. . . . . . . . 9
⊢ (𝑥 = -𝑛 → (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐴 -𝑛 ≤ 𝑦)) |
14 | 13 | adantl 474 |
. . . . . . . 8
⊢
(((((𝑛 ∈
ℝ ∧ -𝑛 ∈
𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) ∧ 𝑥 = -𝑛) → (∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝐴 -𝑛 ≤ 𝑦)) |
15 | | negeq 10678 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = -𝑦 → -𝑟 = --𝑦) |
16 | 15 | eleq1d 2851 |
. . . . . . . . . . . . 13
⊢ (𝑟 = -𝑦 → (-𝑟 ∈ 𝐴 ↔ --𝑦 ∈ 𝐴)) |
17 | | ssel 3853 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
18 | | renegcl 10750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → -𝑦 ∈
ℝ) |
19 | 17, 18 | syl6 35 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ 𝐴 → -𝑦 ∈ ℝ)) |
20 | 19 | adantl 474 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑦 ∈ 𝐴 → -𝑦 ∈ ℝ)) |
21 | 20 | imp 398 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → -𝑦 ∈ ℝ) |
22 | 17 | adantl 474 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ)) |
23 | | recn 10425 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
24 | 22, 23 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℂ)) |
25 | 24 | imp 398 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℂ) |
26 | 25 | negnegd 10789 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → --𝑦 = 𝑦) |
27 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
28 | 26, 27 | eqeltrd 2867 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → --𝑦 ∈ 𝐴) |
29 | 16, 21, 28 | elrabd 3599 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → -𝑦 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}) |
30 | | breq1 4932 |
. . . . . . . . . . . . 13
⊢ (𝑚 = -𝑦 → (𝑚 ≤ 𝑛 ↔ -𝑦 ≤ 𝑛)) |
31 | 30 | rspcv 3532 |
. . . . . . . . . . . 12
⊢ (-𝑦 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → -𝑦 ≤ 𝑛)) |
32 | 29, 31 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → -𝑦 ≤ 𝑛)) |
33 | 22 | imp 398 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ) |
34 | | simplll 762 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → 𝑛 ∈ ℝ) |
35 | | lenegcon1 10945 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑦 ≤ 𝑛 ↔ -𝑛 ≤ 𝑦)) |
36 | 33, 34, 35 | syl2anc 576 |
. . . . . . . . . . 11
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (-𝑦 ≤ 𝑛 ↔ -𝑛 ≤ 𝑦)) |
37 | 32, 36 | sylibd 231 |
. . . . . . . . . 10
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ 𝑦 ∈ 𝐴) → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → -𝑛 ≤ 𝑦)) |
38 | 37 | impancom 444 |
. . . . . . . . 9
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) → (𝑦 ∈ 𝐴 → -𝑛 ≤ 𝑦)) |
39 | 38 | ralrimiv 3132 |
. . . . . . . 8
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) → ∀𝑦 ∈ 𝐴 -𝑛 ≤ 𝑦) |
40 | 11, 14, 39 | rspcedvd 3543 |
. . . . . . 7
⊢ ((((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) ∧ ∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |
41 | 40 | exp31 412 |
. . . . . 6
⊢ ((𝑛 ∈ ℝ ∧ -𝑛 ∈ 𝐴) → (𝐴 ⊆ ℝ → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦))) |
42 | 10, 41 | sylbi 209 |
. . . . 5
⊢ (𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴} → (𝐴 ⊆ ℝ → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦))) |
43 | 42 | impcom 399 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}) → (∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
44 | 43 | rexlimdva 3230 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(∃𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
45 | 44 | 3ad2ant1 1113 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
(∃𝑛 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}∀𝑚 ∈ {𝑟 ∈ ℝ ∣ -𝑟 ∈ 𝐴}𝑚 ≤ 𝑛 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
46 | 7, 45 | mpd 15 |
1
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) |