| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldsdrgfldext2 | Structured version Visualization version GIF version | ||
| Description: A sub-sub-division-ring of a field forms a field extension. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldsdrgfldext.1 | ⊢ 𝐺 = (𝐹 ↾s 𝐴) |
| fldsdrgfldext.2 | ⊢ (𝜑 → 𝐹 ∈ Field) |
| fldsdrgfldext.3 | ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝐹)) |
| fldsdrgfldext2.b | ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐺)) |
| fldsdrgfldext2.h | ⊢ 𝐻 = (𝐹 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| fldsdrgfldext2 | ⊢ (𝜑 → 𝐺/FldExt𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵) | |
| 2 | fldsdrgfldext.1 | . . . 4 ⊢ 𝐺 = (𝐹 ↾s 𝐴) | |
| 3 | fldsdrgfldext.2 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Field) | |
| 4 | fldsdrgfldext.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝐹)) | |
| 5 | fldsdrgfld 20718 | . . . . 5 ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ↾s 𝐴) ∈ Field) |
| 7 | 2, 6 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Field) |
| 8 | fldsdrgfldext2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐺)) | |
| 9 | 1, 7, 8 | fldsdrgfldext 33650 | . 2 ⊢ (𝜑 → 𝐺/FldExt(𝐺 ↾s 𝐵)) |
| 10 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 11 | 10 | sdrgss 20713 | . . . . . 6 ⊢ (𝐵 ∈ (SubDRing‘𝐺) → 𝐵 ⊆ (Base‘𝐺)) |
| 12 | 8, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝐺)) |
| 13 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 14 | 13 | sdrgss 20713 | . . . . . 6 ⊢ (𝐴 ∈ (SubDRing‘𝐹) → 𝐴 ⊆ (Base‘𝐹)) |
| 15 | 2, 13 | ressbas2 17184 | . . . . . 6 ⊢ (𝐴 ⊆ (Base‘𝐹) → 𝐴 = (Base‘𝐺)) |
| 16 | 4, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐴 = (Base‘𝐺)) |
| 17 | 12, 16 | sseqtrrd 3981 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 18 | ressabs 17194 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝐹) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾s 𝐴) ↾s 𝐵) = (𝐹 ↾s 𝐵)) | |
| 19 | 4, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹 ↾s 𝐴) ↾s 𝐵) = (𝐹 ↾s 𝐵)) |
| 20 | 2 | oveq1i 7379 | . . 3 ⊢ (𝐺 ↾s 𝐵) = ((𝐹 ↾s 𝐴) ↾s 𝐵) |
| 21 | fldsdrgfldext2.h | . . 3 ⊢ 𝐻 = (𝐹 ↾s 𝐵) | |
| 22 | 19, 20, 21 | 3eqtr4g 2789 | . 2 ⊢ (𝜑 → (𝐺 ↾s 𝐵) = 𝐻) |
| 23 | 9, 22 | breqtrd 5128 | 1 ⊢ (𝜑 → 𝐺/FldExt𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 Fieldcfield 20650 SubDRingcsdrg 20706 /FldExtcfldext 33627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-cmn 19696 df-mgp 20061 df-ring 20155 df-cring 20156 df-subrg 20490 df-field 20652 df-sdrg 20707 df-fldext 33630 |
| This theorem is referenced by: fldextrspundglemul 33667 fldextrspundgdvdslem 33668 fldextrspundgdvds 33669 fldext2rspun 33670 |
| Copyright terms: Public domain | W3C validator |