| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldsdrgfldext2 | Structured version Visualization version GIF version | ||
| Description: A sub-sub-division-ring of a field forms a field extension. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldsdrgfldext.1 | ⊢ 𝐺 = (𝐹 ↾s 𝐴) |
| fldsdrgfldext.2 | ⊢ (𝜑 → 𝐹 ∈ Field) |
| fldsdrgfldext.3 | ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝐹)) |
| fldsdrgfldext2.b | ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐺)) |
| fldsdrgfldext2.h | ⊢ 𝐻 = (𝐹 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| fldsdrgfldext2 | ⊢ (𝜑 → 𝐺/FldExt𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝐺 ↾s 𝐵) = (𝐺 ↾s 𝐵) | |
| 2 | fldsdrgfldext.1 | . . . 4 ⊢ 𝐺 = (𝐹 ↾s 𝐴) | |
| 3 | fldsdrgfldext.2 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Field) | |
| 4 | fldsdrgfldext.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝐹)) | |
| 5 | fldsdrgfld 20683 | . . . . 5 ⊢ ((𝐹 ∈ Field ∧ 𝐴 ∈ (SubDRing‘𝐹)) → (𝐹 ↾s 𝐴) ∈ Field) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 ↾s 𝐴) ∈ Field) |
| 7 | 2, 6 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Field) |
| 8 | fldsdrgfldext2.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubDRing‘𝐺)) | |
| 9 | 1, 7, 8 | fldsdrgfldext 33634 | . 2 ⊢ (𝜑 → 𝐺/FldExt(𝐺 ↾s 𝐵)) |
| 10 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 11 | 10 | sdrgss 20678 | . . . . . 6 ⊢ (𝐵 ∈ (SubDRing‘𝐺) → 𝐵 ⊆ (Base‘𝐺)) |
| 12 | 8, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝐺)) |
| 13 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 14 | 13 | sdrgss 20678 | . . . . . 6 ⊢ (𝐴 ∈ (SubDRing‘𝐹) → 𝐴 ⊆ (Base‘𝐹)) |
| 15 | 2, 13 | ressbas2 17149 | . . . . . 6 ⊢ (𝐴 ⊆ (Base‘𝐹) → 𝐴 = (Base‘𝐺)) |
| 16 | 4, 14, 15 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐴 = (Base‘𝐺)) |
| 17 | 12, 16 | sseqtrrd 3973 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 18 | ressabs 17159 | . . . 4 ⊢ ((𝐴 ∈ (SubDRing‘𝐹) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾s 𝐴) ↾s 𝐵) = (𝐹 ↾s 𝐵)) | |
| 19 | 4, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹 ↾s 𝐴) ↾s 𝐵) = (𝐹 ↾s 𝐵)) |
| 20 | 2 | oveq1i 7359 | . . 3 ⊢ (𝐺 ↾s 𝐵) = ((𝐹 ↾s 𝐴) ↾s 𝐵) |
| 21 | fldsdrgfldext2.h | . . 3 ⊢ 𝐻 = (𝐹 ↾s 𝐵) | |
| 22 | 19, 20, 21 | 3eqtr4g 2789 | . 2 ⊢ (𝜑 → (𝐺 ↾s 𝐵) = 𝐻) |
| 23 | 9, 22 | breqtrd 5118 | 1 ⊢ (𝜑 → 𝐺/FldExt𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 Fieldcfield 20615 SubDRingcsdrg 20671 /FldExtcfldext 33611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-cmn 19661 df-mgp 20026 df-ring 20120 df-cring 20121 df-subrg 20455 df-field 20617 df-sdrg 20672 df-fldext 33614 |
| This theorem is referenced by: fldextrspundglemul 33652 fldextrspundgdvdslem 33653 fldextrspundgdvds 33654 fldext2rspun 33655 |
| Copyright terms: Public domain | W3C validator |