| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldext2rspun | Structured version Visualization version GIF version | ||
| Description: Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾, 𝐼 / 𝐾 being a quadratic extension, and the degree of 𝐽 / 𝐾 being a power of 2, the degree of the extension 𝐸 / 𝐾 is a power of 2 , 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspun.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspun.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspun.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspun.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspun.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspun.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspun.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspun.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldext2rspun.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| fldext2rspun.1 | ⊢ (𝜑 → (𝐼[:]𝐾) = 2) |
| fldext2rspun.2 | ⊢ (𝜑 → (𝐽[:]𝐾) = (2↑𝑁)) |
| fldext2rspun.e | ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Ref | Expression |
|---|---|
| fldext2rspun | ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 2 | fldextrspun.i | . . . . . 6 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 3 | fldext2rspun.e | . . . . . 6 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) | |
| 4 | fldextrspun.2 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 5 | fldextrspun.5 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | fldextrspun.6 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 7 | 1 | sdrgss 20709 | . . . . . . 7 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 9 | 1, 2, 3, 4, 5, 8 | fldgenfldext 33670 | . . . . 5 ⊢ (𝜑 → 𝐸/FldExt𝐼) |
| 10 | fldextrspun.3 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 11 | fldextrspun.k | . . . . . 6 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 12 | 2, 4, 5, 10, 11 | fldsdrgfldext2 33665 | . . . . 5 ⊢ (𝜑 → 𝐼/FldExt𝐾) |
| 13 | extdgmul 33666 | . . . . 5 ⊢ ((𝐸/FldExt𝐼 ∧ 𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) | |
| 14 | 9, 12, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) |
| 15 | fldextrspun.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 16 | fldextrspun.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 17 | fldext2rspun.2 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐽[:]𝐾) = (2↑𝑁)) | |
| 18 | 2nn 12266 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℕ | |
| 19 | 18 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝜑 → 2 ∈ ℕ) |
| 20 | fldext2rspun.n | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 21 | 19, 20 | nnexpcld 14217 | . . . . . . . . . . 11 ⊢ (𝜑 → (2↑𝑁) ∈ ℕ) |
| 22 | 17, 21 | eqeltrd 2829 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ) |
| 23 | 22 | nnnn0d 12510 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| 24 | fldext2rspun.1 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐼[:]𝐾) = 2) | |
| 25 | 24, 18 | eqeltrdi 2837 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℕ) |
| 26 | 11, 2, 15, 4, 10, 16, 5, 6, 23, 3, 25 | fldextrspundgdvdslem 33682 | . . . . . . . 8 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℕ0) |
| 27 | elnn0 12451 | . . . . . . . 8 ⊢ ((𝐸[:]𝐼) ∈ ℕ0 ↔ ((𝐸[:]𝐼) ∈ ℕ ∨ (𝐸[:]𝐼) = 0)) | |
| 28 | 26, 27 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → ((𝐸[:]𝐼) ∈ ℕ ∨ (𝐸[:]𝐼) = 0)) |
| 29 | extdggt0 33660 | . . . . . . . . . 10 ⊢ (𝐸/FldExt𝐼 → 0 < (𝐸[:]𝐼)) | |
| 30 | 9, 29 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 0 < (𝐸[:]𝐼)) |
| 31 | 30 | gt0ne0d 11749 | . . . . . . . 8 ⊢ (𝜑 → (𝐸[:]𝐼) ≠ 0) |
| 32 | 31 | neneqd 2931 | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐸[:]𝐼) = 0) |
| 33 | 28, 32 | olcnd 877 | . . . . . 6 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℕ) |
| 34 | 33 | nnred 12208 | . . . . 5 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℝ) |
| 35 | 25 | nnred 12208 | . . . . 5 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℝ) |
| 36 | rexmul 13238 | . . . . 5 ⊢ (((𝐸[:]𝐼) ∈ ℝ ∧ (𝐼[:]𝐾) ∈ ℝ) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾))) | |
| 37 | 34, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾))) |
| 38 | 14, 37 | eqtrd 2765 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) · (𝐼[:]𝐾))) |
| 39 | 33, 25 | nnmulcld 12246 | . . 3 ⊢ (𝜑 → ((𝐸[:]𝐼) · (𝐼[:]𝐾)) ∈ ℕ) |
| 40 | 38, 39 | eqeltrd 2829 | . 2 ⊢ (𝜑 → (𝐸[:]𝐾) ∈ ℕ) |
| 41 | 2nn0 12466 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 42 | 24, 41 | eqeltrdi 2837 | . . . 4 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℕ0) |
| 43 | uncom 4124 | . . . . . . 7 ⊢ (𝐺 ∪ 𝐻) = (𝐻 ∪ 𝐺) | |
| 44 | 43 | oveq2i 7401 | . . . . . 6 ⊢ (𝐿 fldGen (𝐺 ∪ 𝐻)) = (𝐿 fldGen (𝐻 ∪ 𝐺)) |
| 45 | 44 | oveq2i 7401 | . . . . 5 ⊢ (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) = (𝐿 ↾s (𝐿 fldGen (𝐻 ∪ 𝐺))) |
| 46 | 3, 45 | eqtri 2753 | . . . 4 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐻 ∪ 𝐺))) |
| 47 | 11, 15, 2, 4, 16, 10, 6, 5, 42, 46, 22 | fldextrspundgdvds 33683 | . . 3 ⊢ (𝜑 → (𝐽[:]𝐾) ∥ (𝐸[:]𝐾)) |
| 48 | 17, 47 | eqbrtrrd 5134 | . 2 ⊢ (𝜑 → (2↑𝑁) ∥ (𝐸[:]𝐾)) |
| 49 | 11, 2, 15, 4, 10, 16, 5, 6, 23, 3 | fldextrspundglemul 33681 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| 50 | 22 | nnred 12208 | . . . . 5 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℝ) |
| 51 | rexmul 13238 | . . . . 5 ⊢ (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾))) | |
| 52 | 35, 50, 51 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾))) |
| 53 | 24, 17 | oveq12d 7408 | . . . 4 ⊢ (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) = (2 · (2↑𝑁))) |
| 54 | 2cnd 12271 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 55 | 54, 20 | expcld 14118 | . . . . . 6 ⊢ (𝜑 → (2↑𝑁) ∈ ℂ) |
| 56 | 54, 55 | mulcomd 11202 | . . . . 5 ⊢ (𝜑 → (2 · (2↑𝑁)) = ((2↑𝑁) · 2)) |
| 57 | 54, 20 | expp1d 14119 | . . . . 5 ⊢ (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
| 58 | 56, 57 | eqtr4d 2768 | . . . 4 ⊢ (𝜑 → (2 · (2↑𝑁)) = (2↑(𝑁 + 1))) |
| 59 | 52, 53, 58 | 3eqtrd 2769 | . . 3 ⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = (2↑(𝑁 + 1))) |
| 60 | 49, 59 | breqtrd 5136 | . 2 ⊢ (𝜑 → (𝐸[:]𝐾) ≤ (2↑(𝑁 + 1))) |
| 61 | 40, 20, 48, 60 | 2exple2exp 32777 | 1 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∪ cun 3915 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ·e cxmu 13078 ↑cexp 14033 ∥ cdvds 16229 Basecbs 17186 ↾s cress 17207 Fieldcfield 20646 SubDRingcsdrg 20702 fldGen cfldgen 33267 /FldExtcfldext 33641 [:]cextdg 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-rpss 7702 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-inf 9401 df-oi 9470 df-r1 9724 df-rank 9725 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-s2 14821 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-dvds 16230 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ocomp 17248 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-mri 17556 df-acs 17557 df-proset 18262 df-drs 18263 df-poset 18281 df-ipo 18494 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cntr 19257 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-nzr 20429 df-subrng 20462 df-subrg 20486 df-rgspn 20527 df-rlreg 20610 df-domn 20611 df-idom 20612 df-drng 20647 df-field 20648 df-sdrg 20703 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lmhm 20936 df-lmim 20937 df-lbs 20989 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-zring 21364 df-dsmm 21648 df-frlm 21663 df-uvc 21699 df-lindf 21722 df-linds 21723 df-assa 21769 df-ind 32781 df-fldgen 33268 df-dim 33602 df-fldext 33644 df-extdg 33645 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |