Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldext2rspun Structured version   Visualization version   GIF version

Theorem fldext2rspun 33695
Description: Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾, 𝐼 / 𝐾 being a quadratic extension, and the degree of 𝐽 / 𝐾 being a power of 2, the degree of the extension 𝐸 / 𝐾 is a power of 2 , 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
fldextrspun.k 𝐾 = (𝐿s 𝐹)
fldextrspun.i 𝐼 = (𝐿s 𝐺)
fldextrspun.j 𝐽 = (𝐿s 𝐻)
fldextrspun.2 (𝜑𝐿 ∈ Field)
fldextrspun.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspun.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspun.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspun.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldext2rspun.n (𝜑𝑁 ∈ ℕ0)
fldext2rspun.1 (𝜑 → (𝐼[:]𝐾) = 2)
fldext2rspun.2 (𝜑 → (𝐽[:]𝐾) = (2↑𝑁))
fldext2rspun.e 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
Assertion
Ref Expression
fldext2rspun (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐾   𝑛,𝑁   𝜑,𝑛
Allowed substitution hints:   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)   𝐼(𝑛)   𝐽(𝑛)   𝐿(𝑛)

Proof of Theorem fldext2rspun
StepHypRef Expression
1 eqid 2731 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
2 fldextrspun.i . . . . . 6 𝐼 = (𝐿s 𝐺)
3 fldext2rspun.e . . . . . 6 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
4 fldextrspun.2 . . . . . 6 (𝜑𝐿 ∈ Field)
5 fldextrspun.5 . . . . . 6 (𝜑𝐺 ∈ (SubDRing‘𝐿))
6 fldextrspun.6 . . . . . . 7 (𝜑𝐻 ∈ (SubDRing‘𝐿))
71sdrgss 20708 . . . . . . 7 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
86, 7syl 17 . . . . . 6 (𝜑𝐻 ⊆ (Base‘𝐿))
91, 2, 3, 4, 5, 8fldgenfldext 33681 . . . . 5 (𝜑𝐸/FldExt𝐼)
10 fldextrspun.3 . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐼))
11 fldextrspun.k . . . . . 6 𝐾 = (𝐿s 𝐹)
122, 4, 5, 10, 11fldsdrgfldext2 33675 . . . . 5 (𝜑𝐼/FldExt𝐾)
13 extdgmul 33676 . . . . 5 ((𝐸/FldExt𝐼𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
149, 12, 13syl2anc 584 . . . 4 (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
15 fldextrspun.j . . . . . . . . 9 𝐽 = (𝐿s 𝐻)
16 fldextrspun.4 . . . . . . . . 9 (𝜑𝐹 ∈ (SubDRing‘𝐽))
17 fldext2rspun.2 . . . . . . . . . . 11 (𝜑 → (𝐽[:]𝐾) = (2↑𝑁))
18 2nn 12198 . . . . . . . . . . . . 13 2 ∈ ℕ
1918a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
20 fldext2rspun.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
2119, 20nnexpcld 14152 . . . . . . . . . . 11 (𝜑 → (2↑𝑁) ∈ ℕ)
2217, 21eqeltrd 2831 . . . . . . . . . 10 (𝜑 → (𝐽[:]𝐾) ∈ ℕ)
2322nnnn0d 12442 . . . . . . . . 9 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
24 fldext2rspun.1 . . . . . . . . . 10 (𝜑 → (𝐼[:]𝐾) = 2)
2524, 18eqeltrdi 2839 . . . . . . . . 9 (𝜑 → (𝐼[:]𝐾) ∈ ℕ)
2611, 2, 15, 4, 10, 16, 5, 6, 23, 3, 25fldextrspundgdvdslem 33693 . . . . . . . 8 (𝜑 → (𝐸[:]𝐼) ∈ ℕ0)
27 elnn0 12383 . . . . . . . 8 ((𝐸[:]𝐼) ∈ ℕ0 ↔ ((𝐸[:]𝐼) ∈ ℕ ∨ (𝐸[:]𝐼) = 0))
2826, 27sylib 218 . . . . . . 7 (𝜑 → ((𝐸[:]𝐼) ∈ ℕ ∨ (𝐸[:]𝐼) = 0))
29 extdggt0 33670 . . . . . . . . . 10 (𝐸/FldExt𝐼 → 0 < (𝐸[:]𝐼))
309, 29syl 17 . . . . . . . . 9 (𝜑 → 0 < (𝐸[:]𝐼))
3130gt0ne0d 11681 . . . . . . . 8 (𝜑 → (𝐸[:]𝐼) ≠ 0)
3231neneqd 2933 . . . . . . 7 (𝜑 → ¬ (𝐸[:]𝐼) = 0)
3328, 32olcnd 877 . . . . . 6 (𝜑 → (𝐸[:]𝐼) ∈ ℕ)
3433nnred 12140 . . . . 5 (𝜑 → (𝐸[:]𝐼) ∈ ℝ)
3525nnred 12140 . . . . 5 (𝜑 → (𝐼[:]𝐾) ∈ ℝ)
36 rexmul 13170 . . . . 5 (((𝐸[:]𝐼) ∈ ℝ ∧ (𝐼[:]𝐾) ∈ ℝ) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
3734, 35, 36syl2anc 584 . . . 4 (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
3814, 37eqtrd 2766 . . 3 (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) · (𝐼[:]𝐾)))
3933, 25nnmulcld 12178 . . 3 (𝜑 → ((𝐸[:]𝐼) · (𝐼[:]𝐾)) ∈ ℕ)
4038, 39eqeltrd 2831 . 2 (𝜑 → (𝐸[:]𝐾) ∈ ℕ)
41 2nn0 12398 . . . . 5 2 ∈ ℕ0
4224, 41eqeltrdi 2839 . . . 4 (𝜑 → (𝐼[:]𝐾) ∈ ℕ0)
43 uncom 4105 . . . . . . 7 (𝐺𝐻) = (𝐻𝐺)
4443oveq2i 7357 . . . . . 6 (𝐿 fldGen (𝐺𝐻)) = (𝐿 fldGen (𝐻𝐺))
4544oveq2i 7357 . . . . 5 (𝐿s (𝐿 fldGen (𝐺𝐻))) = (𝐿s (𝐿 fldGen (𝐻𝐺)))
463, 45eqtri 2754 . . . 4 𝐸 = (𝐿s (𝐿 fldGen (𝐻𝐺)))
4711, 15, 2, 4, 16, 10, 6, 5, 42, 46, 22fldextrspundgdvds 33694 . . 3 (𝜑 → (𝐽[:]𝐾) ∥ (𝐸[:]𝐾))
4817, 47eqbrtrrd 5113 . 2 (𝜑 → (2↑𝑁) ∥ (𝐸[:]𝐾))
4911, 2, 15, 4, 10, 16, 5, 6, 23, 3fldextrspundglemul 33692 . . 3 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)))
5022nnred 12140 . . . . 5 (𝜑 → (𝐽[:]𝐾) ∈ ℝ)
51 rexmul 13170 . . . . 5 (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
5235, 50, 51syl2anc 584 . . . 4 (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾)))
5324, 17oveq12d 7364 . . . 4 (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) = (2 · (2↑𝑁)))
54 2cnd 12203 . . . . . 6 (𝜑 → 2 ∈ ℂ)
5554, 20expcld 14053 . . . . . 6 (𝜑 → (2↑𝑁) ∈ ℂ)
5654, 55mulcomd 11133 . . . . 5 (𝜑 → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
5754, 20expp1d 14054 . . . . 5 (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
5856, 57eqtr4d 2769 . . . 4 (𝜑 → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
5952, 53, 583eqtrd 2770 . . 3 (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = (2↑(𝑁 + 1)))
6049, 59breqtrd 5115 . 2 (𝜑 → (𝐸[:]𝐾) ≤ (2↑(𝑁 + 1)))
6140, 20, 48, 602exple2exp 32828 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  wrex 3056  cun 3895  wss 3897   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cn 12125  2c2 12180  0cn0 12381   ·e cxmu 13010  cexp 13968  cdvds 16163  Basecbs 17120  s cress 17141  Fieldcfield 20645  SubDRingcsdrg 20701   fldGen cfldgen 33276  /FldExtcfldext 33651  [:]cextdg 33653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-rpss 7656  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-r1 9657  df-rank 9658  df-dju 9794  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-s2 14755  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cntr 19230  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rgspn 20526  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lmhm 20956  df-lmim 20957  df-lbs 21009  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-zring 21384  df-dsmm 21669  df-frlm 21684  df-uvc 21720  df-lindf 21743  df-linds 21744  df-assa 21790  df-ind 32832  df-fldgen 33277  df-dim 33612  df-fldext 33654  df-extdg 33655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator