| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldext2rspun | Structured version Visualization version GIF version | ||
| Description: Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾, 𝐼 / 𝐾 being a quadratic extension, and the degree of 𝐽 / 𝐾 being a power of 2, the degree of the extension 𝐸 / 𝐾 is a power of 2 , 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspun.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspun.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspun.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspun.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspun.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspun.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspun.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspun.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldext2rspun.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| fldext2rspun.1 | ⊢ (𝜑 → (𝐼[:]𝐾) = 2) |
| fldext2rspun.2 | ⊢ (𝜑 → (𝐽[:]𝐾) = (2↑𝑁)) |
| fldext2rspun.e | ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Ref | Expression |
|---|---|
| fldext2rspun | ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 2 | fldextrspun.i | . . . . . 6 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 3 | fldext2rspun.e | . . . . . 6 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) | |
| 4 | fldextrspun.2 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 5 | fldextrspun.5 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | fldextrspun.6 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 7 | 1 | sdrgss 20794 | . . . . . . 7 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 9 | 1, 2, 3, 4, 5, 8 | fldgenfldext 33718 | . . . . 5 ⊢ (𝜑 → 𝐸/FldExt𝐼) |
| 10 | fldextrspun.3 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 11 | fldextrspun.k | . . . . . 6 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 12 | 2, 4, 5, 10, 11 | fldsdrgfldext2 33713 | . . . . 5 ⊢ (𝜑 → 𝐼/FldExt𝐾) |
| 13 | extdgmul 33714 | . . . . 5 ⊢ ((𝐸/FldExt𝐼 ∧ 𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) | |
| 14 | 9, 12, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) |
| 15 | fldextrspun.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 16 | fldextrspun.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 17 | fldext2rspun.2 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐽[:]𝐾) = (2↑𝑁)) | |
| 18 | 2nn 12339 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℕ | |
| 19 | 18 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝜑 → 2 ∈ ℕ) |
| 20 | fldext2rspun.n | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 21 | 19, 20 | nnexpcld 14284 | . . . . . . . . . . 11 ⊢ (𝜑 → (2↑𝑁) ∈ ℕ) |
| 22 | 17, 21 | eqeltrd 2841 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ) |
| 23 | 22 | nnnn0d 12587 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| 24 | fldext2rspun.1 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐼[:]𝐾) = 2) | |
| 25 | 24, 18 | eqeltrdi 2849 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℕ) |
| 26 | 11, 2, 15, 4, 10, 16, 5, 6, 23, 3, 25 | fldextrspundgdvdslem 33730 | . . . . . . . 8 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℕ0) |
| 27 | elnn0 12528 | . . . . . . . 8 ⊢ ((𝐸[:]𝐼) ∈ ℕ0 ↔ ((𝐸[:]𝐼) ∈ ℕ ∨ (𝐸[:]𝐼) = 0)) | |
| 28 | 26, 27 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → ((𝐸[:]𝐼) ∈ ℕ ∨ (𝐸[:]𝐼) = 0)) |
| 29 | extdggt0 33708 | . . . . . . . . . 10 ⊢ (𝐸/FldExt𝐼 → 0 < (𝐸[:]𝐼)) | |
| 30 | 9, 29 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 0 < (𝐸[:]𝐼)) |
| 31 | 30 | gt0ne0d 11827 | . . . . . . . 8 ⊢ (𝜑 → (𝐸[:]𝐼) ≠ 0) |
| 32 | 31 | neneqd 2945 | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐸[:]𝐼) = 0) |
| 33 | 28, 32 | olcnd 878 | . . . . . 6 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℕ) |
| 34 | 33 | nnred 12281 | . . . . 5 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℝ) |
| 35 | 25 | nnred 12281 | . . . . 5 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℝ) |
| 36 | rexmul 13313 | . . . . 5 ⊢ (((𝐸[:]𝐼) ∈ ℝ ∧ (𝐼[:]𝐾) ∈ ℝ) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾))) | |
| 37 | 34, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾))) |
| 38 | 14, 37 | eqtrd 2777 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) · (𝐼[:]𝐾))) |
| 39 | 33, 25 | nnmulcld 12319 | . . 3 ⊢ (𝜑 → ((𝐸[:]𝐼) · (𝐼[:]𝐾)) ∈ ℕ) |
| 40 | 38, 39 | eqeltrd 2841 | . 2 ⊢ (𝜑 → (𝐸[:]𝐾) ∈ ℕ) |
| 41 | 2nn0 12543 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 42 | 24, 41 | eqeltrdi 2849 | . . . 4 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℕ0) |
| 43 | uncom 4158 | . . . . . . 7 ⊢ (𝐺 ∪ 𝐻) = (𝐻 ∪ 𝐺) | |
| 44 | 43 | oveq2i 7442 | . . . . . 6 ⊢ (𝐿 fldGen (𝐺 ∪ 𝐻)) = (𝐿 fldGen (𝐻 ∪ 𝐺)) |
| 45 | 44 | oveq2i 7442 | . . . . 5 ⊢ (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) = (𝐿 ↾s (𝐿 fldGen (𝐻 ∪ 𝐺))) |
| 46 | 3, 45 | eqtri 2765 | . . . 4 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐻 ∪ 𝐺))) |
| 47 | 11, 15, 2, 4, 16, 10, 6, 5, 42, 46, 22 | fldextrspundgdvds 33731 | . . 3 ⊢ (𝜑 → (𝐽[:]𝐾) ∥ (𝐸[:]𝐾)) |
| 48 | 17, 47 | eqbrtrrd 5167 | . 2 ⊢ (𝜑 → (2↑𝑁) ∥ (𝐸[:]𝐾)) |
| 49 | 11, 2, 15, 4, 10, 16, 5, 6, 23, 3 | fldextrspundglemul 33729 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| 50 | 22 | nnred 12281 | . . . . 5 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℝ) |
| 51 | rexmul 13313 | . . . . 5 ⊢ (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾))) | |
| 52 | 35, 50, 51 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾))) |
| 53 | 24, 17 | oveq12d 7449 | . . . 4 ⊢ (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) = (2 · (2↑𝑁))) |
| 54 | 2cnd 12344 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 55 | 54, 20 | expcld 14186 | . . . . . 6 ⊢ (𝜑 → (2↑𝑁) ∈ ℂ) |
| 56 | 54, 55 | mulcomd 11282 | . . . . 5 ⊢ (𝜑 → (2 · (2↑𝑁)) = ((2↑𝑁) · 2)) |
| 57 | 54, 20 | expp1d 14187 | . . . . 5 ⊢ (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
| 58 | 56, 57 | eqtr4d 2780 | . . . 4 ⊢ (𝜑 → (2 · (2↑𝑁)) = (2↑(𝑁 + 1))) |
| 59 | 52, 53, 58 | 3eqtrd 2781 | . . 3 ⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = (2↑(𝑁 + 1))) |
| 60 | 49, 59 | breqtrd 5169 | . 2 ⊢ (𝜑 → (𝐸[:]𝐾) ≤ (2↑(𝑁 + 1))) |
| 61 | 40, 20, 48, 60 | 2exple2exp 32834 | 1 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ∪ cun 3949 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 < clt 11295 ≤ cle 11296 ℕcn 12266 2c2 12321 ℕ0cn0 12526 ·e cxmu 13153 ↑cexp 14102 ∥ cdvds 16290 Basecbs 17247 ↾s cress 17274 Fieldcfield 20730 SubDRingcsdrg 20787 fldGen cfldgen 33312 /FldExtcfldext 33689 [:]cextdg 33692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 ax-ac2 10503 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-rpss 7743 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-inf 9483 df-oi 9550 df-r1 9804 df-rank 9805 df-dju 9941 df-card 9979 df-acn 9982 df-ac 10156 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-word 14553 df-lsw 14601 df-concat 14609 df-s1 14634 df-substr 14679 df-pfx 14709 df-s2 14887 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-dvds 16291 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ocomp 17318 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-mri 17631 df-acs 17632 df-proset 18340 df-drs 18341 df-poset 18359 df-ipo 18573 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cntr 19336 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-nzr 20513 df-subrng 20546 df-subrg 20570 df-rgspn 20611 df-rlreg 20694 df-domn 20695 df-idom 20696 df-drng 20731 df-field 20732 df-sdrg 20788 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lmim 21022 df-lbs 21074 df-lvec 21102 df-sra 21172 df-rgmod 21173 df-cnfld 21365 df-zring 21458 df-dsmm 21752 df-frlm 21767 df-uvc 21803 df-lindf 21826 df-linds 21827 df-assa 21873 df-ind 32836 df-fldgen 33313 df-dim 33650 df-fldext 33693 df-extdg 33694 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |