| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldext2rspun | Structured version Visualization version GIF version | ||
| Description: Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾, 𝐼 / 𝐾 being a quadratic extension, and the degree of 𝐽 / 𝐾 being a power of 2, the degree of the extension 𝐸 / 𝐾 is a power of 2 , 𝐸 being the composite field 𝐼𝐽. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspun.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspun.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspun.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspun.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspun.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspun.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspun.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspun.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldext2rspun.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| fldext2rspun.1 | ⊢ (𝜑 → (𝐼[:]𝐾) = 2) |
| fldext2rspun.2 | ⊢ (𝜑 → (𝐽[:]𝐾) = (2↑𝑁)) |
| fldext2rspun.e | ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Ref | Expression |
|---|---|
| fldext2rspun | ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 2 | fldextrspun.i | . . . . . 6 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 3 | fldext2rspun.e | . . . . . 6 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) | |
| 4 | fldextrspun.2 | . . . . . 6 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 5 | fldextrspun.5 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | fldextrspun.6 | . . . . . . 7 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 7 | 1 | sdrgss 20713 | . . . . . . 7 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 9 | 1, 2, 3, 4, 5, 8 | fldgenfldext 33656 | . . . . 5 ⊢ (𝜑 → 𝐸/FldExt𝐼) |
| 10 | fldextrspun.3 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 11 | fldextrspun.k | . . . . . 6 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 12 | 2, 4, 5, 10, 11 | fldsdrgfldext2 33651 | . . . . 5 ⊢ (𝜑 → 𝐼/FldExt𝐾) |
| 13 | extdgmul 33652 | . . . . 5 ⊢ ((𝐸/FldExt𝐼 ∧ 𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) | |
| 14 | 9, 12, 13 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) |
| 15 | fldextrspun.j | . . . . . . . . 9 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 16 | fldextrspun.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 17 | fldext2rspun.2 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐽[:]𝐾) = (2↑𝑁)) | |
| 18 | 2nn 12235 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℕ | |
| 19 | 18 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝜑 → 2 ∈ ℕ) |
| 20 | fldext2rspun.n | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 21 | 19, 20 | nnexpcld 14186 | . . . . . . . . . . 11 ⊢ (𝜑 → (2↑𝑁) ∈ ℕ) |
| 22 | 17, 21 | eqeltrd 2828 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ) |
| 23 | 22 | nnnn0d 12479 | . . . . . . . . 9 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| 24 | fldext2rspun.1 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐼[:]𝐾) = 2) | |
| 25 | 24, 18 | eqeltrdi 2836 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℕ) |
| 26 | 11, 2, 15, 4, 10, 16, 5, 6, 23, 3, 25 | fldextrspundgdvdslem 33668 | . . . . . . . 8 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℕ0) |
| 27 | elnn0 12420 | . . . . . . . 8 ⊢ ((𝐸[:]𝐼) ∈ ℕ0 ↔ ((𝐸[:]𝐼) ∈ ℕ ∨ (𝐸[:]𝐼) = 0)) | |
| 28 | 26, 27 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → ((𝐸[:]𝐼) ∈ ℕ ∨ (𝐸[:]𝐼) = 0)) |
| 29 | extdggt0 33646 | . . . . . . . . . 10 ⊢ (𝐸/FldExt𝐼 → 0 < (𝐸[:]𝐼)) | |
| 30 | 9, 29 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 0 < (𝐸[:]𝐼)) |
| 31 | 30 | gt0ne0d 11718 | . . . . . . . 8 ⊢ (𝜑 → (𝐸[:]𝐼) ≠ 0) |
| 32 | 31 | neneqd 2930 | . . . . . . 7 ⊢ (𝜑 → ¬ (𝐸[:]𝐼) = 0) |
| 33 | 28, 32 | olcnd 877 | . . . . . 6 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℕ) |
| 34 | 33 | nnred 12177 | . . . . 5 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℝ) |
| 35 | 25 | nnred 12177 | . . . . 5 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℝ) |
| 36 | rexmul 13207 | . . . . 5 ⊢ (((𝐸[:]𝐼) ∈ ℝ ∧ (𝐼[:]𝐾) ∈ ℝ) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾))) | |
| 37 | 34, 35, 36 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) = ((𝐸[:]𝐼) · (𝐼[:]𝐾))) |
| 38 | 14, 37 | eqtrd 2764 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) · (𝐼[:]𝐾))) |
| 39 | 33, 25 | nnmulcld 12215 | . . 3 ⊢ (𝜑 → ((𝐸[:]𝐼) · (𝐼[:]𝐾)) ∈ ℕ) |
| 40 | 38, 39 | eqeltrd 2828 | . 2 ⊢ (𝜑 → (𝐸[:]𝐾) ∈ ℕ) |
| 41 | 2nn0 12435 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 42 | 24, 41 | eqeltrdi 2836 | . . . 4 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℕ0) |
| 43 | uncom 4117 | . . . . . . 7 ⊢ (𝐺 ∪ 𝐻) = (𝐻 ∪ 𝐺) | |
| 44 | 43 | oveq2i 7380 | . . . . . 6 ⊢ (𝐿 fldGen (𝐺 ∪ 𝐻)) = (𝐿 fldGen (𝐻 ∪ 𝐺)) |
| 45 | 44 | oveq2i 7380 | . . . . 5 ⊢ (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) = (𝐿 ↾s (𝐿 fldGen (𝐻 ∪ 𝐺))) |
| 46 | 3, 45 | eqtri 2752 | . . . 4 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐻 ∪ 𝐺))) |
| 47 | 11, 15, 2, 4, 16, 10, 6, 5, 42, 46, 22 | fldextrspundgdvds 33669 | . . 3 ⊢ (𝜑 → (𝐽[:]𝐾) ∥ (𝐸[:]𝐾)) |
| 48 | 17, 47 | eqbrtrrd 5126 | . 2 ⊢ (𝜑 → (2↑𝑁) ∥ (𝐸[:]𝐾)) |
| 49 | 11, 2, 15, 4, 10, 16, 5, 6, 23, 3 | fldextrspundglemul 33667 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| 50 | 22 | nnred 12177 | . . . . 5 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℝ) |
| 51 | rexmul 13207 | . . . . 5 ⊢ (((𝐼[:]𝐾) ∈ ℝ ∧ (𝐽[:]𝐾) ∈ ℝ) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾))) | |
| 52 | 35, 50, 51 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐼[:]𝐾) · (𝐽[:]𝐾))) |
| 53 | 24, 17 | oveq12d 7387 | . . . 4 ⊢ (𝜑 → ((𝐼[:]𝐾) · (𝐽[:]𝐾)) = (2 · (2↑𝑁))) |
| 54 | 2cnd 12240 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 55 | 54, 20 | expcld 14087 | . . . . . 6 ⊢ (𝜑 → (2↑𝑁) ∈ ℂ) |
| 56 | 54, 55 | mulcomd 11171 | . . . . 5 ⊢ (𝜑 → (2 · (2↑𝑁)) = ((2↑𝑁) · 2)) |
| 57 | 54, 20 | expp1d 14088 | . . . . 5 ⊢ (𝜑 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
| 58 | 56, 57 | eqtr4d 2767 | . . . 4 ⊢ (𝜑 → (2 · (2↑𝑁)) = (2↑(𝑁 + 1))) |
| 59 | 52, 53, 58 | 3eqtrd 2768 | . . 3 ⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = (2↑(𝑁 + 1))) |
| 60 | 49, 59 | breqtrd 5128 | . 2 ⊢ (𝜑 → (𝐸[:]𝐾) ≤ (2↑(𝑁 + 1))) |
| 61 | 40, 20, 48, 60 | 2exple2exp 32820 | 1 ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐸[:]𝐾) = (2↑𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cun 3909 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 ≤ cle 11185 ℕcn 12162 2c2 12217 ℕ0cn0 12418 ·e cxmu 13047 ↑cexp 14002 ∥ cdvds 16198 Basecbs 17155 ↾s cress 17176 Fieldcfield 20650 SubDRingcsdrg 20706 fldGen cfldgen 33276 /FldExtcfldext 33627 [:]cextdg 33629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-rpss 7679 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-inf 9370 df-oi 9439 df-r1 9693 df-rank 9694 df-dju 9830 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-word 14455 df-lsw 14504 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-s2 14790 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-dvds 16199 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ocomp 17217 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-mri 17525 df-acs 17526 df-proset 18235 df-drs 18236 df-poset 18254 df-ipo 18469 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cntr 19232 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-nzr 20433 df-subrng 20466 df-subrg 20490 df-rgspn 20531 df-rlreg 20614 df-domn 20615 df-idom 20616 df-drng 20651 df-field 20652 df-sdrg 20707 df-lmod 20800 df-lss 20870 df-lsp 20910 df-lmhm 20961 df-lmim 20962 df-lbs 21014 df-lvec 21042 df-sra 21112 df-rgmod 21113 df-cnfld 21297 df-zring 21389 df-dsmm 21674 df-frlm 21689 df-uvc 21725 df-lindf 21748 df-linds 21749 df-assa 21795 df-ind 32824 df-fldgen 33277 df-dim 33588 df-fldext 33630 df-extdg 33631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |