| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspundglemul | Structured version Visualization version GIF version | ||
| Description: Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, 𝐽 / 𝐾 being finite, and the composiste field 𝐸 = 𝐼𝐽, the degree of the extension of the composite field 𝐸 / 𝐾 is at most the product of the field extension degrees of 𝐼 / 𝐾 and 𝐽 / 𝐾. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspun.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspun.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspun.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspun.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspun.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspun.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspun.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspun.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspundglemul.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspundglemul.1 | ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Ref | Expression |
|---|---|
| fldextrspundglemul | ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 2 | fldextrspun.i | . . . . 5 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 3 | fldextrspundglemul.1 | . . . . 5 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) | |
| 4 | fldextrspun.2 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 5 | fldextrspun.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | fldextrspun.6 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 7 | 1 | sdrgss 20696 | . . . . . 6 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 9 | 1, 2, 3, 4, 5, 8 | fldgenfldext 33639 | . . . 4 ⊢ (𝜑 → 𝐸/FldExt𝐼) |
| 10 | extdgcl 33628 | . . . 4 ⊢ (𝐸/FldExt𝐼 → (𝐸[:]𝐼) ∈ ℕ0*) | |
| 11 | xnn0xr 12480 | . . . 4 ⊢ ((𝐸[:]𝐼) ∈ ℕ0* → (𝐸[:]𝐼) ∈ ℝ*) | |
| 12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℝ*) |
| 13 | fldextrspun.j | . . . . 5 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 14 | fldextrspun.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 15 | fldextrspun.k | . . . . 5 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 16 | 13, 4, 6, 14, 15 | fldsdrgfldext2 33634 | . . . 4 ⊢ (𝜑 → 𝐽/FldExt𝐾) |
| 17 | extdgcl 33628 | . . . 4 ⊢ (𝐽/FldExt𝐾 → (𝐽[:]𝐾) ∈ ℕ0*) | |
| 18 | xnn0xr 12480 | . . . 4 ⊢ ((𝐽[:]𝐾) ∈ ℕ0* → (𝐽[:]𝐾) ∈ ℝ*) | |
| 19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℝ*) |
| 20 | fldextrspun.3 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 21 | 2, 4, 5, 20, 15 | fldsdrgfldext2 33634 | . . . . 5 ⊢ (𝜑 → 𝐼/FldExt𝐾) |
| 22 | extdgcl 33628 | . . . . 5 ⊢ (𝐼/FldExt𝐾 → (𝐼[:]𝐾) ∈ ℕ0*) | |
| 23 | xnn0xrge0 13427 | . . . . 5 ⊢ ((𝐼[:]𝐾) ∈ ℕ0* → (𝐼[:]𝐾) ∈ (0[,]+∞)) | |
| 24 | 21, 22, 23 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ (0[,]+∞)) |
| 25 | elxrge0 13378 | . . . 4 ⊢ ((𝐼[:]𝐾) ∈ (0[,]+∞) ↔ ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) | |
| 26 | 24, 25 | sylib 218 | . . 3 ⊢ (𝜑 → ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) |
| 27 | fldextrspundglemul.7 | . . . 4 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 28 | 15, 2, 13, 4, 20, 14, 5, 6, 27, 3 | fldextrspundgle 33649 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) |
| 29 | xlemul1a 13208 | . . 3 ⊢ ((((𝐸[:]𝐼) ∈ ℝ* ∧ (𝐽[:]𝐾) ∈ ℝ* ∧ ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) ∧ (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) ≤ ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) | |
| 30 | 12, 19, 26, 28, 29 | syl31anc 1375 | . 2 ⊢ (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) ≤ ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) |
| 31 | extdgmul 33635 | . . 3 ⊢ ((𝐸/FldExt𝐼 ∧ 𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) | |
| 32 | 9, 21, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) |
| 33 | xnn0xr 12480 | . . . 4 ⊢ ((𝐼[:]𝐾) ∈ ℕ0* → (𝐼[:]𝐾) ∈ ℝ*) | |
| 34 | 21, 22, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℝ*) |
| 35 | xmulcom 13186 | . . 3 ⊢ (((𝐼[:]𝐾) ∈ ℝ* ∧ (𝐽[:]𝐾) ∈ ℝ*) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) | |
| 36 | 34, 19, 35 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) |
| 37 | 30, 32, 36 | 3brtr4d 5127 | 1 ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 +∞cpnf 11165 ℝ*cxr 11167 ≤ cle 11169 ℕ0cn0 12402 ℕ0*cxnn0 12475 ·e cxmu 13031 [,]cicc 13269 Basecbs 17138 ↾s cress 17159 Fieldcfield 20633 SubDRingcsdrg 20689 fldGen cfldgen 33259 /FldExtcfldext 33610 [:]cextdg 33612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-rpss 7663 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-inf 9352 df-oi 9421 df-r1 9679 df-rank 9680 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-word 14439 df-lsw 14488 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-s2 14773 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ocomp 17200 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-mri 17508 df-acs 17509 df-proset 18218 df-drs 18219 df-poset 18237 df-ipo 18452 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cntr 19215 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-nzr 20416 df-subrng 20449 df-subrg 20473 df-rgspn 20514 df-rlreg 20597 df-domn 20598 df-idom 20599 df-drng 20634 df-field 20635 df-sdrg 20690 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lmhm 20944 df-lmim 20945 df-lbs 20997 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-cnfld 21280 df-zring 21372 df-dsmm 21657 df-frlm 21672 df-uvc 21708 df-lindf 21731 df-linds 21732 df-assa 21778 df-ind 32807 df-fldgen 33260 df-dim 33571 df-fldext 33613 df-extdg 33614 |
| This theorem is referenced by: fldextrspundgdvdslem 33651 fldextrspundgdvds 33652 fldext2rspun 33653 |
| Copyright terms: Public domain | W3C validator |