Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldextrspundglemul Structured version   Visualization version   GIF version

Theorem fldextrspundglemul 33720
Description: Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, 𝐽 / 𝐾 being finite, and the composiste field 𝐸 = 𝐼𝐽, the degree of the extension of the composite field 𝐸 / 𝐾 is at most the product of the field extension degrees of 𝐼 / 𝐾 and 𝐽 / 𝐾. (Contributed by Thierry Arnoux, 19-Oct-2025.)
Hypotheses
Ref Expression
fldextrspun.k 𝐾 = (𝐿s 𝐹)
fldextrspun.i 𝐼 = (𝐿s 𝐺)
fldextrspun.j 𝐽 = (𝐿s 𝐻)
fldextrspun.2 (𝜑𝐿 ∈ Field)
fldextrspun.3 (𝜑𝐹 ∈ (SubDRing‘𝐼))
fldextrspun.4 (𝜑𝐹 ∈ (SubDRing‘𝐽))
fldextrspun.5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
fldextrspun.6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
fldextrspundglemul.7 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
fldextrspundglemul.1 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
Assertion
Ref Expression
fldextrspundglemul (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)))

Proof of Theorem fldextrspundglemul
StepHypRef Expression
1 eqid 2735 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
2 fldextrspun.i . . . . 5 𝐼 = (𝐿s 𝐺)
3 fldextrspundglemul.1 . . . . 5 𝐸 = (𝐿s (𝐿 fldGen (𝐺𝐻)))
4 fldextrspun.2 . . . . 5 (𝜑𝐿 ∈ Field)
5 fldextrspun.5 . . . . 5 (𝜑𝐺 ∈ (SubDRing‘𝐿))
6 fldextrspun.6 . . . . . 6 (𝜑𝐻 ∈ (SubDRing‘𝐿))
71sdrgss 20753 . . . . . 6 (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿))
86, 7syl 17 . . . . 5 (𝜑𝐻 ⊆ (Base‘𝐿))
91, 2, 3, 4, 5, 8fldgenfldext 33709 . . . 4 (𝜑𝐸/FldExt𝐼)
10 extdgcl 33698 . . . 4 (𝐸/FldExt𝐼 → (𝐸[:]𝐼) ∈ ℕ0*)
11 xnn0xr 12579 . . . 4 ((𝐸[:]𝐼) ∈ ℕ0* → (𝐸[:]𝐼) ∈ ℝ*)
129, 10, 113syl 18 . . 3 (𝜑 → (𝐸[:]𝐼) ∈ ℝ*)
13 fldextrspun.j . . . . 5 𝐽 = (𝐿s 𝐻)
14 fldextrspun.4 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐽))
15 fldextrspun.k . . . . 5 𝐾 = (𝐿s 𝐹)
1613, 4, 6, 14, 15fldsdrgfldext2 33704 . . . 4 (𝜑𝐽/FldExt𝐾)
17 extdgcl 33698 . . . 4 (𝐽/FldExt𝐾 → (𝐽[:]𝐾) ∈ ℕ0*)
18 xnn0xr 12579 . . . 4 ((𝐽[:]𝐾) ∈ ℕ0* → (𝐽[:]𝐾) ∈ ℝ*)
1916, 17, 183syl 18 . . 3 (𝜑 → (𝐽[:]𝐾) ∈ ℝ*)
20 fldextrspun.3 . . . . . 6 (𝜑𝐹 ∈ (SubDRing‘𝐼))
212, 4, 5, 20, 15fldsdrgfldext2 33704 . . . . 5 (𝜑𝐼/FldExt𝐾)
22 extdgcl 33698 . . . . 5 (𝐼/FldExt𝐾 → (𝐼[:]𝐾) ∈ ℕ0*)
23 xnn0xrge0 13523 . . . . 5 ((𝐼[:]𝐾) ∈ ℕ0* → (𝐼[:]𝐾) ∈ (0[,]+∞))
2421, 22, 233syl 18 . . . 4 (𝜑 → (𝐼[:]𝐾) ∈ (0[,]+∞))
25 elxrge0 13474 . . . 4 ((𝐼[:]𝐾) ∈ (0[,]+∞) ↔ ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾)))
2624, 25sylib 218 . . 3 (𝜑 → ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾)))
27 fldextrspundglemul.7 . . . 4 (𝜑 → (𝐽[:]𝐾) ∈ ℕ0)
2815, 2, 13, 4, 20, 14, 5, 6, 27, 3fldextrspundgle 33719 . . 3 (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾))
29 xlemul1a 13304 . . 3 ((((𝐸[:]𝐼) ∈ ℝ* ∧ (𝐽[:]𝐾) ∈ ℝ* ∧ ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) ∧ (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) ≤ ((𝐽[:]𝐾) ·e (𝐼[:]𝐾)))
3012, 19, 26, 28, 29syl31anc 1375 . 2 (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) ≤ ((𝐽[:]𝐾) ·e (𝐼[:]𝐾)))
31 extdgmul 33705 . . 3 ((𝐸/FldExt𝐼𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
329, 21, 31syl2anc 584 . 2 (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)))
33 xnn0xr 12579 . . . 4 ((𝐼[:]𝐾) ∈ ℕ0* → (𝐼[:]𝐾) ∈ ℝ*)
3421, 22, 333syl 18 . . 3 (𝜑 → (𝐼[:]𝐾) ∈ ℝ*)
35 xmulcom 13282 . . 3 (((𝐼[:]𝐾) ∈ ℝ* ∧ (𝐽[:]𝐾) ∈ ℝ*) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐽[:]𝐾) ·e (𝐼[:]𝐾)))
3634, 19, 35syl2anc 584 . 2 (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐽[:]𝐾) ·e (𝐼[:]𝐾)))
3730, 32, 363brtr4d 5151 1 (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cun 3924  wss 3926   class class class wbr 5119  cfv 6531  (class class class)co 7405  0cc0 11129  +∞cpnf 11266  *cxr 11268  cle 11270  0cn0 12501  0*cxnn0 12574   ·e cxmu 13127  [,]cicc 13365  Basecbs 17228  s cress 17251  Fieldcfield 20690  SubDRingcsdrg 20746   fldGen cfldgen 33304  /FldExtcfldext 33678  [:]cextdg 33681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-rpss 7717  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-r1 9778  df-rank 9779  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-s2 14867  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ocomp 17292  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-mri 17600  df-acs 17601  df-proset 18306  df-drs 18307  df-poset 18325  df-ipo 18538  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cntr 19301  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rgspn 20571  df-rlreg 20654  df-domn 20655  df-idom 20656  df-drng 20691  df-field 20692  df-sdrg 20747  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lmhm 20980  df-lmim 20981  df-lbs 21033  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-cnfld 21316  df-zring 21408  df-dsmm 21692  df-frlm 21707  df-uvc 21743  df-lindf 21766  df-linds 21767  df-assa 21813  df-ind 32828  df-fldgen 33305  df-dim 33639  df-fldext 33682  df-extdg 33683
This theorem is referenced by:  fldextrspundgdvdslem  33721  fldextrspundgdvds  33722  fldext2rspun  33723
  Copyright terms: Public domain W3C validator