| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspundglemul | Structured version Visualization version GIF version | ||
| Description: Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, 𝐽 / 𝐾 being finite, and the composiste field 𝐸 = 𝐼𝐽, the degree of the extension of the composite field 𝐸 / 𝐾 is at most the product of the field extension degrees of 𝐼 / 𝐾 and 𝐽 / 𝐾. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspun.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspun.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspun.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspun.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspun.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspun.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspun.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspun.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspundglemul.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspundglemul.1 | ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Ref | Expression |
|---|---|
| fldextrspundglemul | ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 2 | fldextrspun.i | . . . . 5 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 3 | fldextrspundglemul.1 | . . . . 5 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) | |
| 4 | fldextrspun.2 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 5 | fldextrspun.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | fldextrspun.6 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 7 | 1 | sdrgss 20701 | . . . . . 6 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 9 | 1, 2, 3, 4, 5, 8 | fldgenfldext 33671 | . . . 4 ⊢ (𝜑 → 𝐸/FldExt𝐼) |
| 10 | extdgcl 33659 | . . . 4 ⊢ (𝐸/FldExt𝐼 → (𝐸[:]𝐼) ∈ ℕ0*) | |
| 11 | xnn0xr 12451 | . . . 4 ⊢ ((𝐸[:]𝐼) ∈ ℕ0* → (𝐸[:]𝐼) ∈ ℝ*) | |
| 12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℝ*) |
| 13 | fldextrspun.j | . . . . 5 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 14 | fldextrspun.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 15 | fldextrspun.k | . . . . 5 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 16 | 13, 4, 6, 14, 15 | fldsdrgfldext2 33665 | . . . 4 ⊢ (𝜑 → 𝐽/FldExt𝐾) |
| 17 | extdgcl 33659 | . . . 4 ⊢ (𝐽/FldExt𝐾 → (𝐽[:]𝐾) ∈ ℕ0*) | |
| 18 | xnn0xr 12451 | . . . 4 ⊢ ((𝐽[:]𝐾) ∈ ℕ0* → (𝐽[:]𝐾) ∈ ℝ*) | |
| 19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℝ*) |
| 20 | fldextrspun.3 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 21 | 2, 4, 5, 20, 15 | fldsdrgfldext2 33665 | . . . . 5 ⊢ (𝜑 → 𝐼/FldExt𝐾) |
| 22 | extdgcl 33659 | . . . . 5 ⊢ (𝐼/FldExt𝐾 → (𝐼[:]𝐾) ∈ ℕ0*) | |
| 23 | xnn0xrge0 13398 | . . . . 5 ⊢ ((𝐼[:]𝐾) ∈ ℕ0* → (𝐼[:]𝐾) ∈ (0[,]+∞)) | |
| 24 | 21, 22, 23 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ (0[,]+∞)) |
| 25 | elxrge0 13349 | . . . 4 ⊢ ((𝐼[:]𝐾) ∈ (0[,]+∞) ↔ ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) | |
| 26 | 24, 25 | sylib 218 | . . 3 ⊢ (𝜑 → ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) |
| 27 | fldextrspundglemul.7 | . . . 4 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 28 | 15, 2, 13, 4, 20, 14, 5, 6, 27, 3 | fldextrspundgle 33681 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) |
| 29 | xlemul1a 13179 | . . 3 ⊢ ((((𝐸[:]𝐼) ∈ ℝ* ∧ (𝐽[:]𝐾) ∈ ℝ* ∧ ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) ∧ (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) ≤ ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) | |
| 30 | 12, 19, 26, 28, 29 | syl31anc 1375 | . 2 ⊢ (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) ≤ ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) |
| 31 | extdgmul 33666 | . . 3 ⊢ ((𝐸/FldExt𝐼 ∧ 𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) | |
| 32 | 9, 21, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) |
| 33 | xnn0xr 12451 | . . . 4 ⊢ ((𝐼[:]𝐾) ∈ ℕ0* → (𝐼[:]𝐾) ∈ ℝ*) | |
| 34 | 21, 22, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℝ*) |
| 35 | xmulcom 13157 | . . 3 ⊢ (((𝐼[:]𝐾) ∈ ℝ* ∧ (𝐽[:]𝐾) ∈ ℝ*) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) | |
| 36 | 34, 19, 35 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) |
| 37 | 30, 32, 36 | 3brtr4d 5121 | 1 ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∪ cun 3898 ⊆ wss 3900 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 0cc0 10998 +∞cpnf 11135 ℝ*cxr 11137 ≤ cle 11139 ℕ0cn0 12373 ℕ0*cxnn0 12446 ·e cxmu 13002 [,]cicc 13240 Basecbs 17112 ↾s cress 17133 Fieldcfield 20638 SubDRingcsdrg 20694 fldGen cfldgen 33266 /FldExtcfldext 33641 [:]cextdg 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10346 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 ax-addf 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-inf 9322 df-oi 9391 df-r1 9649 df-rank 9650 df-dju 9786 df-card 9824 df-acn 9827 df-ac 9999 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-icc 13244 df-fz 13400 df-fzo 13547 df-seq 13901 df-exp 13961 df-hash 14230 df-word 14413 df-lsw 14462 df-concat 14470 df-s1 14496 df-substr 14541 df-pfx 14571 df-s2 14747 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-sum 15586 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ocomp 17174 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-mri 17482 df-acs 17483 df-proset 18192 df-drs 18193 df-poset 18211 df-ipo 18426 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-cntr 19223 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-dvr 20312 df-nzr 20421 df-subrng 20454 df-subrg 20478 df-rgspn 20519 df-rlreg 20602 df-domn 20603 df-idom 20604 df-drng 20639 df-field 20640 df-sdrg 20695 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lmhm 20949 df-lmim 20950 df-lbs 21002 df-lvec 21030 df-sra 21100 df-rgmod 21101 df-cnfld 21285 df-zring 21377 df-dsmm 21662 df-frlm 21677 df-uvc 21713 df-lindf 21736 df-linds 21737 df-assa 21783 df-ind 32822 df-fldgen 33267 df-dim 33602 df-fldext 33644 df-extdg 33645 |
| This theorem is referenced by: fldextrspundgdvdslem 33683 fldextrspundgdvds 33684 fldext2rspun 33685 |
| Copyright terms: Public domain | W3C validator |