| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fldextrspundglemul | Structured version Visualization version GIF version | ||
| Description: Given two field extensions 𝐼 / 𝐾 and 𝐽 / 𝐾 of the same field 𝐾, 𝐽 / 𝐾 being finite, and the composiste field 𝐸 = 𝐼𝐽, the degree of the extension of the composite field 𝐸 / 𝐾 is at most the product of the field extension degrees of 𝐼 / 𝐾 and 𝐽 / 𝐾. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| fldextrspun.k | ⊢ 𝐾 = (𝐿 ↾s 𝐹) |
| fldextrspun.i | ⊢ 𝐼 = (𝐿 ↾s 𝐺) |
| fldextrspun.j | ⊢ 𝐽 = (𝐿 ↾s 𝐻) |
| fldextrspun.2 | ⊢ (𝜑 → 𝐿 ∈ Field) |
| fldextrspun.3 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) |
| fldextrspun.4 | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) |
| fldextrspun.5 | ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) |
| fldextrspun.6 | ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) |
| fldextrspundglemul.7 | ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) |
| fldextrspundglemul.1 | ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) |
| Ref | Expression |
|---|---|
| fldextrspundglemul | ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐿) = (Base‘𝐿) | |
| 2 | fldextrspun.i | . . . . 5 ⊢ 𝐼 = (𝐿 ↾s 𝐺) | |
| 3 | fldextrspundglemul.1 | . . . . 5 ⊢ 𝐸 = (𝐿 ↾s (𝐿 fldGen (𝐺 ∪ 𝐻))) | |
| 4 | fldextrspun.2 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ Field) | |
| 5 | fldextrspun.5 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (SubDRing‘𝐿)) | |
| 6 | fldextrspun.6 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (SubDRing‘𝐿)) | |
| 7 | 1 | sdrgss 20794 | . . . . . 6 ⊢ (𝐻 ∈ (SubDRing‘𝐿) → 𝐻 ⊆ (Base‘𝐿)) |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐻 ⊆ (Base‘𝐿)) |
| 9 | 1, 2, 3, 4, 5, 8 | fldgenfldext 33718 | . . . 4 ⊢ (𝜑 → 𝐸/FldExt𝐼) |
| 10 | extdgcl 33707 | . . . 4 ⊢ (𝐸/FldExt𝐼 → (𝐸[:]𝐼) ∈ ℕ0*) | |
| 11 | xnn0xr 12604 | . . . 4 ⊢ ((𝐸[:]𝐼) ∈ ℕ0* → (𝐸[:]𝐼) ∈ ℝ*) | |
| 12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐼) ∈ ℝ*) |
| 13 | fldextrspun.j | . . . . 5 ⊢ 𝐽 = (𝐿 ↾s 𝐻) | |
| 14 | fldextrspun.4 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐽)) | |
| 15 | fldextrspun.k | . . . . 5 ⊢ 𝐾 = (𝐿 ↾s 𝐹) | |
| 16 | 13, 4, 6, 14, 15 | fldsdrgfldext2 33713 | . . . 4 ⊢ (𝜑 → 𝐽/FldExt𝐾) |
| 17 | extdgcl 33707 | . . . 4 ⊢ (𝐽/FldExt𝐾 → (𝐽[:]𝐾) ∈ ℕ0*) | |
| 18 | xnn0xr 12604 | . . . 4 ⊢ ((𝐽[:]𝐾) ∈ ℕ0* → (𝐽[:]𝐾) ∈ ℝ*) | |
| 19 | 16, 17, 18 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℝ*) |
| 20 | fldextrspun.3 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐼)) | |
| 21 | 2, 4, 5, 20, 15 | fldsdrgfldext2 33713 | . . . . 5 ⊢ (𝜑 → 𝐼/FldExt𝐾) |
| 22 | extdgcl 33707 | . . . . 5 ⊢ (𝐼/FldExt𝐾 → (𝐼[:]𝐾) ∈ ℕ0*) | |
| 23 | xnn0xrge0 13546 | . . . . 5 ⊢ ((𝐼[:]𝐾) ∈ ℕ0* → (𝐼[:]𝐾) ∈ (0[,]+∞)) | |
| 24 | 21, 22, 23 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ (0[,]+∞)) |
| 25 | elxrge0 13497 | . . . 4 ⊢ ((𝐼[:]𝐾) ∈ (0[,]+∞) ↔ ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) | |
| 26 | 24, 25 | sylib 218 | . . 3 ⊢ (𝜑 → ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) |
| 27 | fldextrspundglemul.7 | . . . 4 ⊢ (𝜑 → (𝐽[:]𝐾) ∈ ℕ0) | |
| 28 | 15, 2, 13, 4, 20, 14, 5, 6, 27, 3 | fldextrspundgle 33728 | . . 3 ⊢ (𝜑 → (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) |
| 29 | xlemul1a 13330 | . . 3 ⊢ ((((𝐸[:]𝐼) ∈ ℝ* ∧ (𝐽[:]𝐾) ∈ ℝ* ∧ ((𝐼[:]𝐾) ∈ ℝ* ∧ 0 ≤ (𝐼[:]𝐾))) ∧ (𝐸[:]𝐼) ≤ (𝐽[:]𝐾)) → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) ≤ ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) | |
| 30 | 12, 19, 26, 28, 29 | syl31anc 1375 | . 2 ⊢ (𝜑 → ((𝐸[:]𝐼) ·e (𝐼[:]𝐾)) ≤ ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) |
| 31 | extdgmul 33714 | . . 3 ⊢ ((𝐸/FldExt𝐼 ∧ 𝐼/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) | |
| 32 | 9, 21, 31 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐸[:]𝐾) = ((𝐸[:]𝐼) ·e (𝐼[:]𝐾))) |
| 33 | xnn0xr 12604 | . . . 4 ⊢ ((𝐼[:]𝐾) ∈ ℕ0* → (𝐼[:]𝐾) ∈ ℝ*) | |
| 34 | 21, 22, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐼[:]𝐾) ∈ ℝ*) |
| 35 | xmulcom 13308 | . . 3 ⊢ (((𝐼[:]𝐾) ∈ ℝ* ∧ (𝐽[:]𝐾) ∈ ℝ*) → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) | |
| 36 | 34, 19, 35 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐼[:]𝐾) ·e (𝐽[:]𝐾)) = ((𝐽[:]𝐾) ·e (𝐼[:]𝐾))) |
| 37 | 30, 32, 36 | 3brtr4d 5175 | 1 ⊢ (𝜑 → (𝐸[:]𝐾) ≤ ((𝐼[:]𝐾) ·e (𝐽[:]𝐾))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 ⊆ wss 3951 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 0cc0 11155 +∞cpnf 11292 ℝ*cxr 11294 ≤ cle 11296 ℕ0cn0 12526 ℕ0*cxnn0 12599 ·e cxmu 13153 [,]cicc 13390 Basecbs 17247 ↾s cress 17274 Fieldcfield 20730 SubDRingcsdrg 20787 fldGen cfldgen 33312 /FldExtcfldext 33689 [:]cextdg 33692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 ax-ac2 10503 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-rpss 7743 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-inf 9483 df-oi 9550 df-r1 9804 df-rank 9805 df-dju 9941 df-card 9979 df-acn 9982 df-ac 10156 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-xnn0 12600 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-word 14553 df-lsw 14601 df-concat 14609 df-s1 14634 df-substr 14679 df-pfx 14709 df-s2 14887 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ocomp 17318 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-mri 17631 df-acs 17632 df-proset 18340 df-drs 18341 df-poset 18359 df-ipo 18573 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cntr 19336 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-nzr 20513 df-subrng 20546 df-subrg 20570 df-rgspn 20611 df-rlreg 20694 df-domn 20695 df-idom 20696 df-drng 20731 df-field 20732 df-sdrg 20788 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lmim 21022 df-lbs 21074 df-lvec 21102 df-sra 21172 df-rgmod 21173 df-cnfld 21365 df-zring 21458 df-dsmm 21752 df-frlm 21767 df-uvc 21803 df-lindf 21826 df-linds 21827 df-assa 21873 df-ind 32836 df-fldgen 33313 df-dim 33650 df-fldext 33693 df-extdg 33694 |
| This theorem is referenced by: fldextrspundgdvdslem 33730 fldextrspundgdvds 33731 fldext2rspun 33732 |
| Copyright terms: Public domain | W3C validator |