| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3kgrtriexlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for gpg3kgrtriex 48074. (Contributed by AV, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| gpg3kgrtriexlem1 | ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 12153 | . 2 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ) | |
| 2 | 3re 12226 | . . . . 5 ⊢ 3 ∈ ℝ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℝ) |
| 4 | 3, 1 | remulcld 11164 | . . 3 ⊢ (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ) |
| 5 | 4 | rehalfcld 12389 | . 2 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ∈ ℝ) |
| 6 | 5 | ceilcld 13765 | . . 3 ⊢ (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℤ) |
| 7 | 6 | zred 12598 | . 2 ⊢ (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℝ) |
| 8 | 2re 12220 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝐾 ∈ ℕ → 2 ∈ ℝ) |
| 10 | nnrp 12923 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+) | |
| 11 | 2lt3 12313 | . . . . 5 ⊢ 2 < 3 | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝐾 ∈ ℕ → 2 < 3) |
| 13 | 9, 3, 10, 12 | ltmul1dd 13010 | . . 3 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) < (3 · 𝐾)) |
| 14 | 2pos 12249 | . . . . 5 ⊢ 0 < 2 | |
| 15 | 14 | a1i 11 | . . . 4 ⊢ (𝐾 ∈ ℕ → 0 < 2) |
| 16 | ltmuldiv2 12017 | . . . 4 ⊢ ((𝐾 ∈ ℝ ∧ (3 · 𝐾) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝐾) < (3 · 𝐾) ↔ 𝐾 < ((3 · 𝐾) / 2))) | |
| 17 | 1, 4, 9, 15, 16 | syl112anc 1376 | . . 3 ⊢ (𝐾 ∈ ℕ → ((2 · 𝐾) < (3 · 𝐾) ↔ 𝐾 < ((3 · 𝐾) / 2))) |
| 18 | 13, 17 | mpbid 232 | . 2 ⊢ (𝐾 ∈ ℕ → 𝐾 < ((3 · 𝐾) / 2)) |
| 19 | 5 | ceilged 13768 | . 2 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ≤ (⌈‘((3 · 𝐾) / 2))) |
| 20 | 1, 5, 7, 18, 19 | ltletrd 11294 | 1 ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 · cmul 11033 < clt 11168 / cdiv 11795 ℕcn 12146 2c2 12201 3c3 12202 ⌈cceil 13713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fl 13714 df-ceil 13715 |
| This theorem is referenced by: gpg3kgrtriexlem4 48071 gpg3kgrtriexlem6 48073 |
| Copyright terms: Public domain | W3C validator |