Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriex Structured version   Visualization version   GIF version

Theorem gpg3kgrtriex 47994
Description: All generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
gpg3kgrtriex.g 𝐺 = (𝑁 gPetersenGr 𝐾)
Assertion
Ref Expression
gpg3kgrtriex (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))
Distinct variable group:   𝑡,𝐺
Allowed substitution hints:   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem gpg3kgrtriex
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 11261 . . . . . . . 8 1 ∈ V
21prid2 4769 . . . . . . 7 1 ∈ {0, 1}
32a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 1 ∈ {0, 1})
4 gpg3kgrtriex.n . . . . . . . 8 𝑁 = (3 · 𝐾)
5 3nn 12349 . . . . . . . . . 10 3 ∈ ℕ
65a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 3 ∈ ℕ)
7 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
86, 7nnmulcld 12323 . . . . . . . 8 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
94, 8eqeltrid 2844 . . . . . . 7 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
10 lbfzo0 13742 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
119, 10sylibr 234 . . . . . 6 (𝐾 ∈ ℕ → 0 ∈ (0..^𝑁))
123, 11opelxpd 5729 . . . . 5 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
134gpg3kgrtriexlem4 47991 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
149, 13jca 511 . . . . . 6 (𝐾 ∈ ℕ → (𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
15 eqid 2736 . . . . . . . 8 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
16 eqid 2736 . . . . . . . 8 (0..^𝑁) = (0..^𝑁)
1715, 16gpgvtx 47951 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1817eleq2d 2826 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁))))
1914, 18syl 17 . . . . 5 (𝐾 ∈ ℕ → (⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁))))
2012, 19mpbird 257 . . . 4 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)))
21 gpg3kgrtriex.g . . . . 5 𝐺 = (𝑁 gPetersenGr 𝐾)
2221fveq2i 6914 . . . 4 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾))
2320, 22eleqtrrdi 2851 . . 3 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘𝐺))
24 oveq2 7443 . . . . 5 (𝑎 = ⟨1, 0⟩ → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx ⟨1, 0⟩))
25 biidd 262 . . . . . 6 (𝑎 = ⟨1, 0⟩ → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2624, 25rexeqbidv 3346 . . . . 5 (𝑎 = ⟨1, 0⟩ → (∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2724, 26rexeqbidv 3346 . . . 4 (𝑎 = ⟨1, 0⟩ → (∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2827adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ 𝑎 = ⟨1, 0⟩) → (∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
294gpg3kgrtriexlem3 47990 . . . . 5 (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ‘3))
30 eqid 2736 . . . . . . . . 9 1 = 1
3130a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → 1 = 1)
3231olcd 874 . . . . . . 7 (𝐾 ∈ ℕ → (1 = 0 ∨ 1 = 1))
3332, 11jca 511 . . . . . 6 (𝐾 ∈ ℕ → ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁)))
3429, 13jca 511 . . . . . . 7 (𝐾 ∈ ℕ → (𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
35 eqid 2736 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
3616, 15, 21, 35opgpgvtx 47959 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (⟨1, 0⟩ ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁))))
3734, 36syl 17 . . . . . 6 (𝐾 ∈ ℕ → (⟨1, 0⟩ ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁))))
3833, 37mpbird 257 . . . . 5 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘𝐺))
39 c0ex 11259 . . . . . . 7 0 ∈ V
401, 39op1st 8027 . . . . . 6 (1st ‘⟨1, 0⟩) = 1
4140a1i 11 . . . . 5 (𝐾 ∈ ℕ → (1st ‘⟨1, 0⟩) = 1)
42 eqid 2736 . . . . . 6 (𝐺 NeighbVtx ⟨1, 0⟩) = (𝐺 NeighbVtx ⟨1, 0⟩)
4315, 21, 35, 42gpgnbgrvtx1 47980 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) ∧ (⟨1, 0⟩ ∈ (Vtx‘𝐺) ∧ (1st ‘⟨1, 0⟩) = 1)) → (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
4429, 13, 38, 41, 43syl22anc 839 . . . 4 (𝐾 ∈ ℕ → (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
45 neeq1 3002 . . . . . 6 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → (𝑏𝑐 ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐))
46 preq1 4739 . . . . . . 7 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → {𝑏, 𝑐} = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐})
4746eleq1d 2825 . . . . . 6 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → ({𝑏, 𝑐} ∈ (Edg‘𝐺) ↔ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺)))
4845, 47anbi12d 632 . . . . 5 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺))))
49 neeq2 3003 . . . . . 6 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩))
50 preq2 4740 . . . . . . 7 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
5150eleq1d 2825 . . . . . 6 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺) ↔ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5249, 51anbi12d 632 . . . . 5 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → ((⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))))
53 opex 5476 . . . . . . 7 ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ V
5453tpid1 4774 . . . . . 6 ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}
55 eleq2 2829 . . . . . . 7 ((𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
5655adantl 481 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
5754, 56mpbiri 258 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩))
58 opex 5476 . . . . . . 7 ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ V
5958tpid3 4779 . . . . . 6 ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}
60 eleq2 2829 . . . . . . 7 ((𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} → (⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
6160adantl 481 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
6259, 61mpbiri 258 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩))
634gpg3kgrtriexlem5 47992 . . . . . . . . . 10 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁))
641, 39op2nd 8028 . . . . . . . . . . . . 13 (2nd ‘⟨1, 0⟩) = 0
6564oveq1i 7445 . . . . . . . . . . . 12 ((2nd ‘⟨1, 0⟩) + 𝐾) = (0 + 𝐾)
66 nncn 12278 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
6766addlidd 11466 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (0 + 𝐾) = 𝐾)
6865, 67eqtrid 2788 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = 𝐾)
6968oveq1d 7450 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁))
7064oveq1i 7445 . . . . . . . . . . . . 13 ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾)
7170a1i 11 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾))
72 df-neg 11499 . . . . . . . . . . . 12 -𝐾 = (0 − 𝐾)
7371, 72eqtr4di 2794 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = -𝐾)
7473oveq1d 7450 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
7563, 69, 743netr4d 3017 . . . . . . . . 9 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁))
7675olcd 874 . . . . . . . 8 (𝐾 ∈ ℕ → (1 ≠ 1 ∨ (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)))
77 ovex 7468 . . . . . . . . 9 (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ∈ V
781, 77opthne 5494 . . . . . . . 8 (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ↔ (1 ≠ 1 ∨ (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)))
7976, 78sylibr 234 . . . . . . 7 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩)
8064a1i 11 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → (2nd ‘⟨1, 0⟩) = 0)
8180oveq1d 7450 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = (0 + 𝐾))
8281, 67eqtrd 2776 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = 𝐾)
8382oveq1d 7450 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁))
8483opeq2d 4886 . . . . . . . . 9 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ = ⟨1, (𝐾 mod 𝑁)⟩)
8580oveq1d 7450 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾))
8685, 72eqtr4di 2794 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = -𝐾)
8786oveq1d 7450 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
8887opeq2d 4886 . . . . . . . . 9 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ = ⟨1, (-𝐾 mod 𝑁)⟩)
8984, 88preq12d 4747 . . . . . . . 8 (𝐾 ∈ ℕ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩})
90 eqid 2736 . . . . . . . . 9 {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
914, 21, 90gpg3kgrtriexlem6 47993 . . . . . . . 8 (𝐾 ∈ ℕ → {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} ∈ (Edg‘𝐺))
9289, 91eqeltrd 2840 . . . . . . 7 (𝐾 ∈ ℕ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
9379, 92jca 511 . . . . . 6 (𝐾 ∈ ℕ → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
9493adantr 480 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
9548, 52, 57, 62, 942rspcedvdw 3637 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
9644, 95mpdan 687 . . 3 (𝐾 ∈ ℕ → ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
9723, 28, 96rspcedvd 3625 . 2 (𝐾 ∈ ℕ → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
98 gpgusgra 47961 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
9921, 98eqeltrid 2844 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈ USGraph)
100 eqid 2736 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
101 eqid 2736 . . . 4 (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 𝑎)
10235, 100, 101usgrgrtrirex 47866 . . 3 (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
10334, 99, 1023syl 18 . 2 (𝐾 ∈ ℕ → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
10497, 103mpbird 257 1 (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1538  wex 1777  wcel 2107  wne 2939  wrex 3069  {cpr 4634  {ctp 4636  cop 4638   × cxp 5688  cfv 6566  (class class class)co 7435  1st c1st 8017  2nd c2nd 8018  0cc0 11159  1c1 11160   + caddc 11162   · cmul 11164  cmin 11496  -cneg 11497   / cdiv 11924  cn 12270  2c2 12325  3c3 12326  cuz 12882  ..^cfzo 13697  cceil 13834   mod cmo 13912  Vtxcvtx 29036  Edgcedg 29087  USGraphcusgr 29189   NeighbVtx cnbgr 29372  GrTrianglescgrtri 47853   gPetersenGr cgpg 47948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-3o 8513  df-oadd 8515  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-sup 9486  df-inf 9487  df-dju 9945  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-xnn0 12604  df-z 12618  df-dec 12738  df-uz 12883  df-rp 13039  df-ico 13396  df-fz 13551  df-fzo 13698  df-fl 13835  df-ceil 13836  df-mod 13913  df-hash 14373  df-dvds 16294  df-struct 17187  df-slot 17222  df-ndx 17234  df-base 17252  df-edgf 29027  df-vtx 29038  df-iedg 29039  df-edg 29088  df-uhgr 29098  df-upgr 29122  df-umgr 29123  df-uspgr 29190  df-usgr 29191  df-nbgr 29373  df-grtri 47854  df-gpg 47949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator