Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriex Structured version   Visualization version   GIF version

Theorem gpg3kgrtriex 47991
Description: All generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
gpg3kgrtriex.g 𝐺 = (𝑁 gPetersenGr 𝐾)
Assertion
Ref Expression
gpg3kgrtriex (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))
Distinct variable group:   𝑡,𝐺
Allowed substitution hints:   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem gpg3kgrtriex
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 11240 . . . . . . . 8 1 ∈ V
21prid2 4745 . . . . . . 7 1 ∈ {0, 1}
32a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 1 ∈ {0, 1})
4 gpg3kgrtriex.n . . . . . . . 8 𝑁 = (3 · 𝐾)
5 3nn 12328 . . . . . . . . . 10 3 ∈ ℕ
65a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 3 ∈ ℕ)
7 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
86, 7nnmulcld 12302 . . . . . . . 8 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
94, 8eqeltrid 2837 . . . . . . 7 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
10 lbfzo0 13722 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
119, 10sylibr 234 . . . . . 6 (𝐾 ∈ ℕ → 0 ∈ (0..^𝑁))
123, 11opelxpd 5706 . . . . 5 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
134gpg3kgrtriexlem4 47988 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
149, 13jca 511 . . . . . 6 (𝐾 ∈ ℕ → (𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
15 eqid 2734 . . . . . . . 8 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
16 eqid 2734 . . . . . . . 8 (0..^𝑁) = (0..^𝑁)
1715, 16gpgvtx 47948 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1817eleq2d 2819 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁))))
1914, 18syl 17 . . . . 5 (𝐾 ∈ ℕ → (⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁))))
2012, 19mpbird 257 . . . 4 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)))
21 gpg3kgrtriex.g . . . . 5 𝐺 = (𝑁 gPetersenGr 𝐾)
2221fveq2i 6890 . . . 4 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾))
2320, 22eleqtrrdi 2844 . . 3 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘𝐺))
24 oveq2 7422 . . . . 5 (𝑎 = ⟨1, 0⟩ → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx ⟨1, 0⟩))
25 biidd 262 . . . . . 6 (𝑎 = ⟨1, 0⟩ → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2624, 25rexeqbidv 3331 . . . . 5 (𝑎 = ⟨1, 0⟩ → (∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2724, 26rexeqbidv 3331 . . . 4 (𝑎 = ⟨1, 0⟩ → (∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2827adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ 𝑎 = ⟨1, 0⟩) → (∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
294gpg3kgrtriexlem3 47987 . . . . 5 (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ‘3))
30 eqid 2734 . . . . . . . . 9 1 = 1
3130a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → 1 = 1)
3231olcd 874 . . . . . . 7 (𝐾 ∈ ℕ → (1 = 0 ∨ 1 = 1))
3332, 11jca 511 . . . . . 6 (𝐾 ∈ ℕ → ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁)))
3429, 13jca 511 . . . . . . 7 (𝐾 ∈ ℕ → (𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
35 eqid 2734 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
3616, 15, 21, 35opgpgvtx 47956 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (⟨1, 0⟩ ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁))))
3734, 36syl 17 . . . . . 6 (𝐾 ∈ ℕ → (⟨1, 0⟩ ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁))))
3833, 37mpbird 257 . . . . 5 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘𝐺))
39 c0ex 11238 . . . . . . 7 0 ∈ V
401, 39op1st 8005 . . . . . 6 (1st ‘⟨1, 0⟩) = 1
4140a1i 11 . . . . 5 (𝐾 ∈ ℕ → (1st ‘⟨1, 0⟩) = 1)
42 eqid 2734 . . . . . 6 (𝐺 NeighbVtx ⟨1, 0⟩) = (𝐺 NeighbVtx ⟨1, 0⟩)
4315, 21, 35, 42gpgnbgrvtx1 47977 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) ∧ (⟨1, 0⟩ ∈ (Vtx‘𝐺) ∧ (1st ‘⟨1, 0⟩) = 1)) → (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
4429, 13, 38, 41, 43syl22anc 838 . . . 4 (𝐾 ∈ ℕ → (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
45 neeq1 2993 . . . . . 6 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → (𝑏𝑐 ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐))
46 preq1 4715 . . . . . . 7 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → {𝑏, 𝑐} = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐})
4746eleq1d 2818 . . . . . 6 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → ({𝑏, 𝑐} ∈ (Edg‘𝐺) ↔ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺)))
4845, 47anbi12d 632 . . . . 5 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺))))
49 neeq2 2994 . . . . . 6 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩))
50 preq2 4716 . . . . . . 7 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
5150eleq1d 2818 . . . . . 6 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺) ↔ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5249, 51anbi12d 632 . . . . 5 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → ((⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))))
53 opex 5451 . . . . . . 7 ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ V
5453tpid1 4750 . . . . . 6 ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}
55 eleq2 2822 . . . . . . 7 ((𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
5655adantl 481 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
5754, 56mpbiri 258 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩))
58 opex 5451 . . . . . . 7 ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ V
5958tpid3 4755 . . . . . 6 ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}
60 eleq2 2822 . . . . . . 7 ((𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} → (⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
6160adantl 481 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
6259, 61mpbiri 258 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩))
634gpg3kgrtriexlem5 47989 . . . . . . . . . 10 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁))
641, 39op2nd 8006 . . . . . . . . . . . . 13 (2nd ‘⟨1, 0⟩) = 0
6564oveq1i 7424 . . . . . . . . . . . 12 ((2nd ‘⟨1, 0⟩) + 𝐾) = (0 + 𝐾)
66 nncn 12257 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
6766addlidd 11445 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (0 + 𝐾) = 𝐾)
6865, 67eqtrid 2781 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = 𝐾)
6968oveq1d 7429 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁))
7064oveq1i 7424 . . . . . . . . . . . . 13 ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾)
7170a1i 11 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾))
72 df-neg 11478 . . . . . . . . . . . 12 -𝐾 = (0 − 𝐾)
7371, 72eqtr4di 2787 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = -𝐾)
7473oveq1d 7429 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
7563, 69, 743netr4d 3008 . . . . . . . . 9 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁))
7675olcd 874 . . . . . . . 8 (𝐾 ∈ ℕ → (1 ≠ 1 ∨ (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)))
77 ovex 7447 . . . . . . . . 9 (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ∈ V
781, 77opthne 5469 . . . . . . . 8 (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ↔ (1 ≠ 1 ∨ (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)))
7976, 78sylibr 234 . . . . . . 7 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩)
8064a1i 11 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → (2nd ‘⟨1, 0⟩) = 0)
8180oveq1d 7429 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = (0 + 𝐾))
8281, 67eqtrd 2769 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = 𝐾)
8382oveq1d 7429 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁))
8483opeq2d 4862 . . . . . . . . 9 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ = ⟨1, (𝐾 mod 𝑁)⟩)
8580oveq1d 7429 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾))
8685, 72eqtr4di 2787 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = -𝐾)
8786oveq1d 7429 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
8887opeq2d 4862 . . . . . . . . 9 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ = ⟨1, (-𝐾 mod 𝑁)⟩)
8984, 88preq12d 4723 . . . . . . . 8 (𝐾 ∈ ℕ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩})
90 eqid 2734 . . . . . . . . 9 {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
914, 21, 90gpg3kgrtriexlem6 47990 . . . . . . . 8 (𝐾 ∈ ℕ → {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} ∈ (Edg‘𝐺))
9289, 91eqeltrd 2833 . . . . . . 7 (𝐾 ∈ ℕ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
9379, 92jca 511 . . . . . 6 (𝐾 ∈ ℕ → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
9493adantr 480 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
9548, 52, 57, 62, 942rspcedvdw 3620 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
9644, 95mpdan 687 . . 3 (𝐾 ∈ ℕ → ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
9723, 28, 96rspcedvd 3608 . 2 (𝐾 ∈ ℕ → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
98 gpgusgra 47958 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
9921, 98eqeltrid 2837 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈ USGraph)
100 eqid 2734 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
101 eqid 2734 . . . 4 (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 𝑎)
10235, 100, 101usgrgrtrirex 47863 . . 3 (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
10334, 99, 1023syl 18 . 2 (𝐾 ∈ ℕ → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
10497, 103mpbird 257 1 (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wex 1778  wcel 2107  wne 2931  wrex 3059  {cpr 4610  {ctp 4612  cop 4614   × cxp 5665  cfv 6542  (class class class)co 7414  1st c1st 7995  2nd c2nd 7996  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  cmin 11475  -cneg 11476   / cdiv 11903  cn 12249  2c2 12304  3c3 12305  cuz 12861  ..^cfzo 13677  cceil 13814   mod cmo 13892  Vtxcvtx 28960  Edgcedg 29011  USGraphcusgr 29113   NeighbVtx cnbgr 29296  GrTrianglescgrtri 47850   gPetersenGr cgpg 47945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-3o 8491  df-oadd 8493  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9465  df-inf 9466  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-xnn0 12584  df-z 12598  df-dec 12718  df-uz 12862  df-rp 13018  df-ico 13376  df-fz 13531  df-fzo 13678  df-fl 13815  df-ceil 13816  df-mod 13893  df-hash 14353  df-dvds 16274  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-edgf 28953  df-vtx 28962  df-iedg 28963  df-edg 29012  df-uhgr 29022  df-upgr 29046  df-umgr 29047  df-uspgr 29114  df-usgr 29115  df-nbgr 29297  df-grtri 47851  df-gpg 47946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator