Step | Hyp | Ref
| Expression |
1 | | 1ex 11261 |
. . . . . . . 8
⊢ 1 ∈
V |
2 | 1 | prid2 4769 |
. . . . . . 7
⊢ 1 ∈
{0, 1} |
3 | 2 | a1i 11 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 1 ∈
{0, 1}) |
4 | | gpg3kgrtriex.n |
. . . . . . . 8
⊢ 𝑁 = (3 · 𝐾) |
5 | | 3nn 12349 |
. . . . . . . . . 10
⊢ 3 ∈
ℕ |
6 | 5 | a1i 11 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 3 ∈
ℕ) |
7 | | id 22 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℕ) |
8 | 6, 7 | nnmulcld 12323 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → (3
· 𝐾) ∈
ℕ) |
9 | 4, 8 | eqeltrid 2844 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝑁 ∈
ℕ) |
10 | | lbfzo0 13742 |
. . . . . . 7
⊢ (0 ∈
(0..^𝑁) ↔ 𝑁 ∈
ℕ) |
11 | 9, 10 | sylibr 234 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 0 ∈
(0..^𝑁)) |
12 | 3, 11 | opelxpd 5729 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 〈1,
0〉 ∈ ({0, 1} × (0..^𝑁))) |
13 | 4 | gpg3kgrtriexlem4 47991 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
(1..^(⌈‘(𝑁 /
2)))) |
14 | 9, 13 | jca 511 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (𝑁 ∈ ℕ ∧ 𝐾 ∈
(1..^(⌈‘(𝑁 /
2))))) |
15 | | eqid 2736 |
. . . . . . . 8
⊢
(1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2))) |
16 | | eqid 2736 |
. . . . . . . 8
⊢
(0..^𝑁) = (0..^𝑁) |
17 | 15, 16 | gpgvtx 47951 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(1..^(⌈‘(𝑁 /
2)))) → (Vtx‘(𝑁
gPetersenGr 𝐾)) = ({0, 1}
× (0..^𝑁))) |
18 | 17 | eleq2d 2826 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈
(1..^(⌈‘(𝑁 /
2)))) → (〈1, 0〉 ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ 〈1, 0〉 ∈ ({0, 1}
× (0..^𝑁)))) |
19 | 14, 18 | syl 17 |
. . . . 5
⊢ (𝐾 ∈ ℕ → (〈1,
0〉 ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ 〈1, 0〉 ∈ ({0, 1}
× (0..^𝑁)))) |
20 | 12, 19 | mpbird 257 |
. . . 4
⊢ (𝐾 ∈ ℕ → 〈1,
0〉 ∈ (Vtx‘(𝑁 gPetersenGr 𝐾))) |
21 | | gpg3kgrtriex.g |
. . . . 5
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
22 | 21 | fveq2i 6914 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘(𝑁 gPetersenGr
𝐾)) |
23 | 20, 22 | eleqtrrdi 2851 |
. . 3
⊢ (𝐾 ∈ ℕ → 〈1,
0〉 ∈ (Vtx‘𝐺)) |
24 | | oveq2 7443 |
. . . . 5
⊢ (𝑎 = 〈1, 0〉 →
(𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 〈1,
0〉)) |
25 | | biidd 262 |
. . . . . 6
⊢ (𝑎 = 〈1, 0〉 →
((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
26 | 24, 25 | rexeqbidv 3346 |
. . . . 5
⊢ (𝑎 = 〈1, 0〉 →
(∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑐 ∈ (𝐺 NeighbVtx 〈1, 0〉)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
27 | 24, 26 | rexeqbidv 3346 |
. . . 4
⊢ (𝑎 = 〈1, 0〉 →
(∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx 〈1, 0〉)∃𝑐 ∈ (𝐺 NeighbVtx 〈1, 0〉)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
28 | 27 | adantl 481 |
. . 3
⊢ ((𝐾 ∈ ℕ ∧ 𝑎 = 〈1, 0〉) →
(∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx 〈1, 0〉)∃𝑐 ∈ (𝐺 NeighbVtx 〈1, 0〉)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
29 | 4 | gpg3kgrtriexlem3 47990 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 𝑁 ∈
(ℤ≥‘3)) |
30 | | eqid 2736 |
. . . . . . . . 9
⊢ 1 =
1 |
31 | 30 | a1i 11 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 1 =
1) |
32 | 31 | olcd 874 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → (1 = 0
∨ 1 = 1)) |
33 | 32, 11 | jca 511 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → ((1 = 0
∨ 1 = 1) ∧ 0 ∈ (0..^𝑁))) |
34 | 29, 13 | jca 511 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → (𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))) |
35 | | eqid 2736 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
36 | 16, 15, 21, 35 | opgpgvtx 47959 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (〈1,
0〉 ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈
(0..^𝑁)))) |
37 | 34, 36 | syl 17 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (〈1,
0〉 ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈
(0..^𝑁)))) |
38 | 33, 37 | mpbird 257 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 〈1,
0〉 ∈ (Vtx‘𝐺)) |
39 | | c0ex 11259 |
. . . . . . 7
⊢ 0 ∈
V |
40 | 1, 39 | op1st 8027 |
. . . . . 6
⊢
(1st ‘〈1, 0〉) = 1 |
41 | 40 | a1i 11 |
. . . . 5
⊢ (𝐾 ∈ ℕ →
(1st ‘〈1, 0〉) = 1) |
42 | | eqid 2736 |
. . . . . 6
⊢ (𝐺 NeighbVtx 〈1, 0〉) =
(𝐺 NeighbVtx 〈1,
0〉) |
43 | 15, 21, 35, 42 | gpgnbgrvtx1 47980 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) ∧ (〈1, 0〉
∈ (Vtx‘𝐺) ∧
(1st ‘〈1, 0〉) = 1)) → (𝐺 NeighbVtx 〈1, 0〉) = {〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉}) |
44 | 29, 13, 38, 41, 43 | syl22anc 839 |
. . . 4
⊢ (𝐾 ∈ ℕ → (𝐺 NeighbVtx 〈1, 0〉) =
{〈1, (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉}) |
45 | | neeq1 3002 |
. . . . . 6
⊢ (𝑏 = 〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 → (𝑏 ≠ 𝑐 ↔ 〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 𝑐)) |
46 | | preq1 4739 |
. . . . . . 7
⊢ (𝑏 = 〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 → {𝑏, 𝑐} = {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 𝑐}) |
47 | 46 | eleq1d 2825 |
. . . . . 6
⊢ (𝑏 = 〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 → ({𝑏, 𝑐} ∈ (Edg‘𝐺) ↔ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 𝑐} ∈ (Edg‘𝐺))) |
48 | 45, 47 | anbi12d 632 |
. . . . 5
⊢ (𝑏 = 〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 → ((𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 𝑐 ∧ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 𝑐} ∈ (Edg‘𝐺)))) |
49 | | neeq2 3003 |
. . . . . 6
⊢ (𝑐 = 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉 → (〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 𝑐 ↔ 〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉)) |
50 | | preq2 4740 |
. . . . . . 7
⊢ (𝑐 = 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉 → {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 𝑐} = {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉}) |
51 | 50 | eleq1d 2825 |
. . . . . 6
⊢ (𝑐 = 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉 → ({〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 𝑐} ∈ (Edg‘𝐺) ↔ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
52 | 49, 51 | anbi12d 632 |
. . . . 5
⊢ (𝑐 = 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉 → ((〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 𝑐 ∧ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 𝑐} ∈ (Edg‘𝐺)) ↔ (〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∧ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺)))) |
53 | | opex 5476 |
. . . . . . 7
⊢ 〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ∈ V |
54 | 53 | tpid1 4774 |
. . . . . 6
⊢ 〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ∈ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉} |
55 | | eleq2 2829 |
. . . . . . 7
⊢ ((𝐺 NeighbVtx 〈1, 0〉) =
{〈1, (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉} → (〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ∈ (𝐺 NeighbVtx 〈1, 0〉) ↔ 〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ∈ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉})) |
56 | 55 | adantl 481 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx 〈1, 0〉) =
{〈1, (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉}) → (〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ∈ (𝐺 NeighbVtx 〈1, 0〉) ↔ 〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ∈ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉})) |
57 | 54, 56 | mpbiri 258 |
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx 〈1, 0〉) =
{〈1, (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉}) → 〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ∈ (𝐺 NeighbVtx 〈1,
0〉)) |
58 | | opex 5476 |
. . . . . . 7
⊢ 〈1,
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∈ V |
59 | 58 | tpid3 4779 |
. . . . . 6
⊢ 〈1,
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∈ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉} |
60 | | eleq2 2829 |
. . . . . . 7
⊢ ((𝐺 NeighbVtx 〈1, 0〉) =
{〈1, (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉} → (〈1,
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∈ (𝐺 NeighbVtx 〈1, 0〉) ↔ 〈1,
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∈ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉})) |
61 | 60 | adantl 481 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx 〈1, 0〉) =
{〈1, (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉}) → (〈1,
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∈ (𝐺 NeighbVtx 〈1, 0〉) ↔ 〈1,
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∈ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉})) |
62 | 59, 61 | mpbiri 258 |
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx 〈1, 0〉) =
{〈1, (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉}) → 〈1,
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∈ (𝐺 NeighbVtx 〈1,
0〉)) |
63 | 4 | gpg3kgrtriexlem5 47992 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁)) |
64 | 1, 39 | op2nd 8028 |
. . . . . . . . . . . . 13
⊢
(2nd ‘〈1, 0〉) = 0 |
65 | 64 | oveq1i 7445 |
. . . . . . . . . . . 12
⊢
((2nd ‘〈1, 0〉) + 𝐾) = (0 + 𝐾) |
66 | | nncn 12278 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℂ) |
67 | 66 | addlidd 11466 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ → (0 +
𝐾) = 𝐾) |
68 | 65, 67 | eqtrid 2788 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ →
((2nd ‘〈1, 0〉) + 𝐾) = 𝐾) |
69 | 68 | oveq1d 7450 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ →
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁)) |
70 | 64 | oveq1i 7445 |
. . . . . . . . . . . . 13
⊢
((2nd ‘〈1, 0〉) − 𝐾) = (0 − 𝐾) |
71 | 70 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ →
((2nd ‘〈1, 0〉) − 𝐾) = (0 − 𝐾)) |
72 | | df-neg 11499 |
. . . . . . . . . . . 12
⊢ -𝐾 = (0 − 𝐾) |
73 | 71, 72 | eqtr4di 2794 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ →
((2nd ‘〈1, 0〉) − 𝐾) = -𝐾) |
74 | 73 | oveq1d 7450 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ →
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)) |
75 | 63, 69, 74 | 3netr4d 3017 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ →
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁) ≠ (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)) |
76 | 75 | olcd 874 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → (1 ≠ 1
∨ (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁) ≠ (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁))) |
77 | | ovex 7468 |
. . . . . . . . 9
⊢
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁) ∈ V |
78 | 1, 77 | opthne 5494 |
. . . . . . . 8
⊢ (〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ↔ (1 ≠ 1 ∨
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁) ≠ (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁))) |
79 | 76, 78 | sylibr 234 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉) |
80 | 64 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℕ →
(2nd ‘〈1, 0〉) = 0) |
81 | 80 | oveq1d 7450 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ →
((2nd ‘〈1, 0〉) + 𝐾) = (0 + 𝐾)) |
82 | 81, 67 | eqtrd 2776 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ →
((2nd ‘〈1, 0〉) + 𝐾) = 𝐾) |
83 | 82 | oveq1d 7450 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ →
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁)) |
84 | 83 | opeq2d 4886 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 = 〈1, (𝐾 mod 𝑁)〉) |
85 | 80 | oveq1d 7450 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ →
((2nd ‘〈1, 0〉) − 𝐾) = (0 − 𝐾)) |
86 | 85, 72 | eqtr4di 2794 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℕ →
((2nd ‘〈1, 0〉) − 𝐾) = -𝐾) |
87 | 86 | oveq1d 7450 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ →
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)) |
88 | 87 | opeq2d 4886 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 〈1,
(((2nd ‘〈1, 0〉) − 𝐾) mod 𝑁)〉 = 〈1, (-𝐾 mod 𝑁)〉) |
89 | 84, 88 | preq12d 4747 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → {〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉} = {〈1, (𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉}) |
90 | | eqid 2736 |
. . . . . . . . 9
⊢ {〈1,
(𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} = {〈1, (𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} |
91 | 4, 21, 90 | gpg3kgrtriexlem6 47993 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → {〈1,
(𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} ∈ (Edg‘𝐺)) |
92 | 89, 91 | eqeltrd 2840 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → {〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺)) |
93 | 79, 92 | jca 511 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∧ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
94 | 93 | adantr 480 |
. . . . 5
⊢ ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx 〈1, 0〉) =
{〈1, (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉}) → (〈1,
(((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉 ∧ {〈1, (((2nd
‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘〈1, 0〉) − 𝐾) mod 𝑁)〉} ∈ (Edg‘𝐺))) |
95 | 48, 52, 57, 62, 94 | 2rspcedvdw 3637 |
. . . 4
⊢ ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx 〈1, 0〉) =
{〈1, (((2nd ‘〈1, 0〉) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘〈1, 0〉)〉, 〈1, (((2nd ‘〈1,
0〉) − 𝐾) mod
𝑁)〉}) →
∃𝑏 ∈ (𝐺 NeighbVtx 〈1,
0〉)∃𝑐 ∈
(𝐺 NeighbVtx 〈1,
0〉)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) |
96 | 44, 95 | mpdan 687 |
. . 3
⊢ (𝐾 ∈ ℕ →
∃𝑏 ∈ (𝐺 NeighbVtx 〈1,
0〉)∃𝑐 ∈
(𝐺 NeighbVtx 〈1,
0〉)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) |
97 | 23, 28, 96 | rspcedvd 3625 |
. 2
⊢ (𝐾 ∈ ℕ →
∃𝑎 ∈
(Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) |
98 | | gpgusgra 47961 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
99 | 21, 98 | eqeltrid 2844 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈
USGraph) |
100 | | eqid 2736 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
101 | | eqid 2736 |
. . . 4
⊢ (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 𝑎) |
102 | 35, 100, 101 | usgrgrtrirex 47866 |
. . 3
⊢ (𝐺 ∈ USGraph →
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
103 | 34, 99, 102 | 3syl 18 |
. 2
⊢ (𝐾 ∈ ℕ →
(∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
104 | 97, 103 | mpbird 257 |
1
⊢ (𝐾 ∈ ℕ →
∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) |