Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriex Structured version   Visualization version   GIF version

Theorem gpg3kgrtriex 48080
Description: All generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
gpg3kgrtriex.g 𝐺 = (𝑁 gPetersenGr 𝐾)
Assertion
Ref Expression
gpg3kgrtriex (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))
Distinct variable group:   𝑡,𝐺
Allowed substitution hints:   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem gpg3kgrtriex
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 11170 . . . . . . . 8 1 ∈ V
21prid2 4727 . . . . . . 7 1 ∈ {0, 1}
32a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 1 ∈ {0, 1})
4 gpg3kgrtriex.n . . . . . . . 8 𝑁 = (3 · 𝐾)
5 3nn 12265 . . . . . . . . . 10 3 ∈ ℕ
65a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 3 ∈ ℕ)
7 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
86, 7nnmulcld 12239 . . . . . . . 8 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
94, 8eqeltrid 2832 . . . . . . 7 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
10 lbfzo0 13660 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
119, 10sylibr 234 . . . . . 6 (𝐾 ∈ ℕ → 0 ∈ (0..^𝑁))
123, 11opelxpd 5677 . . . . 5 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
134gpg3kgrtriexlem4 48077 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
149, 13jca 511 . . . . . 6 (𝐾 ∈ ℕ → (𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
15 eqid 2729 . . . . . . . 8 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
16 eqid 2729 . . . . . . . 8 (0..^𝑁) = (0..^𝑁)
1715, 16gpgvtx 48034 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1817eleq2d 2814 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁))))
1914, 18syl 17 . . . . 5 (𝐾 ∈ ℕ → (⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁))))
2012, 19mpbird 257 . . . 4 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)))
21 gpg3kgrtriex.g . . . . 5 𝐺 = (𝑁 gPetersenGr 𝐾)
2221fveq2i 6861 . . . 4 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾))
2320, 22eleqtrrdi 2839 . . 3 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘𝐺))
24 oveq2 7395 . . . . 5 (𝑎 = ⟨1, 0⟩ → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx ⟨1, 0⟩))
25 biidd 262 . . . . . 6 (𝑎 = ⟨1, 0⟩ → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2624, 25rexeqbidv 3320 . . . . 5 (𝑎 = ⟨1, 0⟩ → (∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2724, 26rexeqbidv 3320 . . . 4 (𝑎 = ⟨1, 0⟩ → (∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2827adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ 𝑎 = ⟨1, 0⟩) → (∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
294gpg3kgrtriexlem3 48076 . . . . 5 (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ‘3))
30 eqid 2729 . . . . . . . . 9 1 = 1
3130a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → 1 = 1)
3231olcd 874 . . . . . . 7 (𝐾 ∈ ℕ → (1 = 0 ∨ 1 = 1))
3332, 11jca 511 . . . . . 6 (𝐾 ∈ ℕ → ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁)))
3429, 13jca 511 . . . . . . 7 (𝐾 ∈ ℕ → (𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
35 eqid 2729 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
3616, 15, 21, 35opgpgvtx 48046 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (⟨1, 0⟩ ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁))))
3734, 36syl 17 . . . . . 6 (𝐾 ∈ ℕ → (⟨1, 0⟩ ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁))))
3833, 37mpbird 257 . . . . 5 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘𝐺))
39 c0ex 11168 . . . . . . 7 0 ∈ V
401, 39op1st 7976 . . . . . 6 (1st ‘⟨1, 0⟩) = 1
4140a1i 11 . . . . 5 (𝐾 ∈ ℕ → (1st ‘⟨1, 0⟩) = 1)
42 eqid 2729 . . . . . 6 (𝐺 NeighbVtx ⟨1, 0⟩) = (𝐺 NeighbVtx ⟨1, 0⟩)
4315, 21, 35, 42gpgnbgrvtx1 48066 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) ∧ (⟨1, 0⟩ ∈ (Vtx‘𝐺) ∧ (1st ‘⟨1, 0⟩) = 1)) → (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
4429, 13, 38, 41, 43syl22anc 838 . . . 4 (𝐾 ∈ ℕ → (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
45 neeq1 2987 . . . . . 6 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → (𝑏𝑐 ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐))
46 preq1 4697 . . . . . . 7 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → {𝑏, 𝑐} = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐})
4746eleq1d 2813 . . . . . 6 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → ({𝑏, 𝑐} ∈ (Edg‘𝐺) ↔ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺)))
4845, 47anbi12d 632 . . . . 5 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺))))
49 neeq2 2988 . . . . . 6 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩))
50 preq2 4698 . . . . . . 7 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
5150eleq1d 2813 . . . . . 6 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺) ↔ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5249, 51anbi12d 632 . . . . 5 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → ((⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))))
53 opex 5424 . . . . . . 7 ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ V
5453tpid1 4732 . . . . . 6 ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}
55 eleq2 2817 . . . . . . 7 ((𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
5655adantl 481 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
5754, 56mpbiri 258 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩))
58 opex 5424 . . . . . . 7 ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ V
5958tpid3 4737 . . . . . 6 ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}
60 eleq2 2817 . . . . . . 7 ((𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} → (⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
6160adantl 481 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
6259, 61mpbiri 258 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩))
634gpg3kgrtriexlem5 48078 . . . . . . . . . 10 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁))
641, 39op2nd 7977 . . . . . . . . . . . . 13 (2nd ‘⟨1, 0⟩) = 0
6564oveq1i 7397 . . . . . . . . . . . 12 ((2nd ‘⟨1, 0⟩) + 𝐾) = (0 + 𝐾)
66 nncn 12194 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
6766addlidd 11375 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (0 + 𝐾) = 𝐾)
6865, 67eqtrid 2776 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = 𝐾)
6968oveq1d 7402 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁))
7064oveq1i 7397 . . . . . . . . . . . . 13 ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾)
7170a1i 11 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾))
72 df-neg 11408 . . . . . . . . . . . 12 -𝐾 = (0 − 𝐾)
7371, 72eqtr4di 2782 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = -𝐾)
7473oveq1d 7402 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
7563, 69, 743netr4d 3002 . . . . . . . . 9 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁))
7675olcd 874 . . . . . . . 8 (𝐾 ∈ ℕ → (1 ≠ 1 ∨ (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)))
77 ovex 7420 . . . . . . . . 9 (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ∈ V
781, 77opthne 5442 . . . . . . . 8 (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ↔ (1 ≠ 1 ∨ (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)))
7976, 78sylibr 234 . . . . . . 7 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩)
8064a1i 11 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → (2nd ‘⟨1, 0⟩) = 0)
8180oveq1d 7402 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = (0 + 𝐾))
8281, 67eqtrd 2764 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = 𝐾)
8382oveq1d 7402 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁))
8483opeq2d 4844 . . . . . . . . 9 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ = ⟨1, (𝐾 mod 𝑁)⟩)
8580oveq1d 7402 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾))
8685, 72eqtr4di 2782 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = -𝐾)
8786oveq1d 7402 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
8887opeq2d 4844 . . . . . . . . 9 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ = ⟨1, (-𝐾 mod 𝑁)⟩)
8984, 88preq12d 4705 . . . . . . . 8 (𝐾 ∈ ℕ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩})
90 eqid 2729 . . . . . . . . 9 {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
914, 21, 90gpg3kgrtriexlem6 48079 . . . . . . . 8 (𝐾 ∈ ℕ → {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} ∈ (Edg‘𝐺))
9289, 91eqeltrd 2828 . . . . . . 7 (𝐾 ∈ ℕ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
9379, 92jca 511 . . . . . 6 (𝐾 ∈ ℕ → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
9493adantr 480 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
9548, 52, 57, 62, 942rspcedvdw 3602 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
9644, 95mpdan 687 . . 3 (𝐾 ∈ ℕ → ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
9723, 28, 96rspcedvd 3590 . 2 (𝐾 ∈ ℕ → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
98 gpgusgra 48048 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
9921, 98eqeltrid 2832 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈ USGraph)
100 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
101 eqid 2729 . . . 4 (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 𝑎)
10235, 100, 101usgrgrtrirex 47949 . . 3 (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
10334, 99, 1023syl 18 . 2 (𝐾 ∈ ℕ → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
10497, 103mpbird 257 1 (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  {cpr 4591  {ctp 4593  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  cuz 12793  ..^cfzo 13615  cceil 13753   mod cmo 13831  Vtxcvtx 28923  Edgcedg 28974  USGraphcusgr 29076   NeighbVtx cnbgr 29259  GrTrianglescgrtri 47936   gPetersenGr cgpg 48031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-3o 8436  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-ceil 13755  df-mod 13832  df-hash 14296  df-dvds 16223  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-edgf 28916  df-vtx 28925  df-iedg 28926  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-umgr 29010  df-uspgr 29077  df-usgr 29078  df-nbgr 29260  df-grtri 47937  df-gpg 48032
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator