Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriex Structured version   Visualization version   GIF version

Theorem gpg3kgrtriex 48203
Description: All generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
gpg3kgrtriex.g 𝐺 = (𝑁 gPetersenGr 𝐾)
Assertion
Ref Expression
gpg3kgrtriex (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))
Distinct variable group:   𝑡,𝐺
Allowed substitution hints:   𝐾(𝑡)   𝑁(𝑡)

Proof of Theorem gpg3kgrtriex
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 11118 . . . . . . . 8 1 ∈ V
21prid2 4717 . . . . . . 7 1 ∈ {0, 1}
32a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 1 ∈ {0, 1})
4 gpg3kgrtriex.n . . . . . . . 8 𝑁 = (3 · 𝐾)
5 3nn 12214 . . . . . . . . . 10 3 ∈ ℕ
65a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 3 ∈ ℕ)
7 id 22 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
86, 7nnmulcld 12188 . . . . . . . 8 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
94, 8eqeltrid 2837 . . . . . . 7 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
10 lbfzo0 13609 . . . . . . 7 (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ)
119, 10sylibr 234 . . . . . 6 (𝐾 ∈ ℕ → 0 ∈ (0..^𝑁))
123, 11opelxpd 5660 . . . . 5 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁)))
134gpg3kgrtriexlem4 48200 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
149, 13jca 511 . . . . . 6 (𝐾 ∈ ℕ → (𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
15 eqid 2733 . . . . . . . 8 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
16 eqid 2733 . . . . . . . 8 (0..^𝑁) = (0..^𝑁)
1715, 16gpgvtx 48157 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1817eleq2d 2819 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁))))
1914, 18syl 17 . . . . 5 (𝐾 ∈ ℕ → (⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)) ↔ ⟨1, 0⟩ ∈ ({0, 1} × (0..^𝑁))))
2012, 19mpbird 257 . . . 4 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘(𝑁 gPetersenGr 𝐾)))
21 gpg3kgrtriex.g . . . . 5 𝐺 = (𝑁 gPetersenGr 𝐾)
2221fveq2i 6834 . . . 4 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾))
2320, 22eleqtrrdi 2844 . . 3 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘𝐺))
24 oveq2 7363 . . . . 5 (𝑎 = ⟨1, 0⟩ → (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx ⟨1, 0⟩))
25 biidd 262 . . . . . 6 (𝑎 = ⟨1, 0⟩ → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2624, 25rexeqbidv 3315 . . . . 5 (𝑎 = ⟨1, 0⟩ → (∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2724, 26rexeqbidv 3315 . . . 4 (𝑎 = ⟨1, 0⟩ → (∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
2827adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ 𝑎 = ⟨1, 0⟩) → (∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
294gpg3kgrtriexlem3 48199 . . . . 5 (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ‘3))
30 eqid 2733 . . . . . . . . 9 1 = 1
3130a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → 1 = 1)
3231olcd 874 . . . . . . 7 (𝐾 ∈ ℕ → (1 = 0 ∨ 1 = 1))
3332, 11jca 511 . . . . . 6 (𝐾 ∈ ℕ → ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁)))
3429, 13jca 511 . . . . . . 7 (𝐾 ∈ ℕ → (𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))))
35 eqid 2733 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
3616, 15, 21, 35opgpgvtx 48169 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (⟨1, 0⟩ ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁))))
3734, 36syl 17 . . . . . 6 (𝐾 ∈ ℕ → (⟨1, 0⟩ ∈ (Vtx‘𝐺) ↔ ((1 = 0 ∨ 1 = 1) ∧ 0 ∈ (0..^𝑁))))
3833, 37mpbird 257 . . . . 5 (𝐾 ∈ ℕ → ⟨1, 0⟩ ∈ (Vtx‘𝐺))
39 c0ex 11116 . . . . . . 7 0 ∈ V
401, 39op1st 7938 . . . . . 6 (1st ‘⟨1, 0⟩) = 1
4140a1i 11 . . . . 5 (𝐾 ∈ ℕ → (1st ‘⟨1, 0⟩) = 1)
42 eqid 2733 . . . . . 6 (𝐺 NeighbVtx ⟨1, 0⟩) = (𝐺 NeighbVtx ⟨1, 0⟩)
4315, 21, 35, 42gpgnbgrvtx1 48189 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) ∧ (⟨1, 0⟩ ∈ (Vtx‘𝐺) ∧ (1st ‘⟨1, 0⟩) = 1)) → (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
4429, 13, 38, 41, 43syl22anc 838 . . . 4 (𝐾 ∈ ℕ → (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
45 neeq1 2992 . . . . . 6 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → (𝑏𝑐 ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐))
46 preq1 4687 . . . . . . 7 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → {𝑏, 𝑐} = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐})
4746eleq1d 2818 . . . . . 6 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → ({𝑏, 𝑐} ∈ (Edg‘𝐺) ↔ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺)))
4845, 47anbi12d 632 . . . . 5 (𝑏 = ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ → ((𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺))))
49 neeq2 2993 . . . . . 6 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩))
50 preq2 4688 . . . . . . 7 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩})
5150eleq1d 2818 . . . . . 6 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺) ↔ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
5249, 51anbi12d 632 . . . . 5 (𝑐 = ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ → ((⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ 𝑐 ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, 𝑐} ∈ (Edg‘𝐺)) ↔ (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))))
53 opex 5409 . . . . . . 7 ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ V
5453tpid1 4722 . . . . . 6 ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}
55 eleq2 2822 . . . . . . 7 ((𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
5655adantl 481 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
5754, 56mpbiri 258 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩))
58 opex 5409 . . . . . . 7 ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ V
5958tpid3 4727 . . . . . 6 ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}
60 eleq2 2822 . . . . . . 7 ((𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} → (⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
6160adantl 481 . . . . . 6 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩) ↔ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}))
6259, 61mpbiri 258 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∈ (𝐺 NeighbVtx ⟨1, 0⟩))
634gpg3kgrtriexlem5 48201 . . . . . . . . . 10 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ≠ (-𝐾 mod 𝑁))
641, 39op2nd 7939 . . . . . . . . . . . . 13 (2nd ‘⟨1, 0⟩) = 0
6564oveq1i 7365 . . . . . . . . . . . 12 ((2nd ‘⟨1, 0⟩) + 𝐾) = (0 + 𝐾)
66 nncn 12143 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
6766addlidd 11324 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → (0 + 𝐾) = 𝐾)
6865, 67eqtrid 2780 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = 𝐾)
6968oveq1d 7370 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁))
7064oveq1i 7365 . . . . . . . . . . . . 13 ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾)
7170a1i 11 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾))
72 df-neg 11357 . . . . . . . . . . . 12 -𝐾 = (0 − 𝐾)
7371, 72eqtr4di 2786 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = -𝐾)
7473oveq1d 7370 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
7563, 69, 743netr4d 3007 . . . . . . . . 9 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁))
7675olcd 874 . . . . . . . 8 (𝐾 ∈ ℕ → (1 ≠ 1 ∨ (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)))
77 ovex 7388 . . . . . . . . 9 (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ∈ V
781, 77opthne 5427 . . . . . . . 8 (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ↔ (1 ≠ 1 ∨ (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) ≠ (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)))
7976, 78sylibr 234 . . . . . . 7 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩)
8064a1i 11 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ → (2nd ‘⟨1, 0⟩) = 0)
8180oveq1d 7370 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = (0 + 𝐾))
8281, 67eqtrd 2768 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) + 𝐾) = 𝐾)
8382oveq1d 7370 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁) = (𝐾 mod 𝑁))
8483opeq2d 4833 . . . . . . . . 9 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ = ⟨1, (𝐾 mod 𝑁)⟩)
8580oveq1d 7370 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = (0 − 𝐾))
8685, 72eqtr4di 2786 . . . . . . . . . . 11 (𝐾 ∈ ℕ → ((2nd ‘⟨1, 0⟩) − 𝐾) = -𝐾)
8786oveq1d 7370 . . . . . . . . . 10 (𝐾 ∈ ℕ → (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
8887opeq2d 4833 . . . . . . . . 9 (𝐾 ∈ ℕ → ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ = ⟨1, (-𝐾 mod 𝑁)⟩)
8984, 88preq12d 4695 . . . . . . . 8 (𝐾 ∈ ℕ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩})
90 eqid 2733 . . . . . . . . 9 {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
914, 21, 90gpg3kgrtriexlem6 48202 . . . . . . . 8 (𝐾 ∈ ℕ → {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} ∈ (Edg‘𝐺))
9289, 91eqeltrd 2833 . . . . . . 7 (𝐾 ∈ ℕ → {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺))
9379, 92jca 511 . . . . . 6 (𝐾 ∈ ℕ → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
9493adantr 480 . . . . 5 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → (⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩ ∧ {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩} ∈ (Edg‘𝐺)))
9548, 52, 57, 62, 942rspcedvdw 3588 . . . 4 ((𝐾 ∈ ℕ ∧ (𝐺 NeighbVtx ⟨1, 0⟩) = {⟨1, (((2nd ‘⟨1, 0⟩) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd ‘⟨1, 0⟩)⟩, ⟨1, (((2nd ‘⟨1, 0⟩) − 𝐾) mod 𝑁)⟩}) → ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
9644, 95mpdan 687 . . 3 (𝐾 ∈ ℕ → ∃𝑏 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)∃𝑐 ∈ (𝐺 NeighbVtx ⟨1, 0⟩)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
9723, 28, 96rspcedvd 3576 . 2 (𝐾 ∈ ℕ → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
98 gpgusgra 48171 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
9921, 98eqeltrid 2837 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈ USGraph)
100 eqid 2733 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
101 eqid 2733 . . . 4 (𝐺 NeighbVtx 𝑎) = (𝐺 NeighbVtx 𝑎)
10235, 100, 101usgrgrtrirex 48064 . . 3 (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
10334, 99, 1023syl 18 . 2 (𝐾 ∈ ℕ → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (𝐺 NeighbVtx 𝑎)∃𝑐 ∈ (𝐺 NeighbVtx 𝑎)(𝑏𝑐 ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))))
10497, 103mpbird 257 1 (𝐾 ∈ ℕ → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2113  wne 2930  wrex 3058  {cpr 4579  {ctp 4581  cop 4583   × cxp 5619  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021  cmin 11354  -cneg 11355   / cdiv 11784  cn 12135  2c2 12190  3c3 12191  cuz 12742  ..^cfzo 13564  cceil 13705   mod cmo 13783  Vtxcvtx 28985  Edgcedg 29036  USGraphcusgr 29138   NeighbVtx cnbgr 29321  GrTrianglescgrtri 48051   gPetersenGr cgpg 48154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-3o 8396  df-oadd 8398  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-sup 9336  df-inf 9337  df-dju 9804  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-xnn0 12465  df-z 12479  df-dec 12599  df-uz 12743  df-rp 12901  df-ico 13261  df-fz 13418  df-fzo 13565  df-fl 13706  df-ceil 13707  df-mod 13784  df-hash 14248  df-dvds 16174  df-struct 17068  df-slot 17103  df-ndx 17115  df-base 17131  df-edgf 28978  df-vtx 28987  df-iedg 28988  df-edg 29037  df-uhgr 29047  df-upgr 29071  df-umgr 29072  df-uspgr 29139  df-usgr 29140  df-nbgr 29322  df-grtri 48052  df-gpg 48155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator