| Step | Hyp | Ref
| Expression |
| 1 | | nnz 12618 |
. . . 4
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℤ) |
| 2 | | gpg3kgrtriex.n |
. . . . 5
⊢ 𝑁 = (3 · 𝐾) |
| 3 | | 3nn 12328 |
. . . . . . 7
⊢ 3 ∈
ℕ |
| 4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 3 ∈
ℕ) |
| 5 | | id 22 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℕ) |
| 6 | 4, 5 | nnmulcld 12302 |
. . . . 5
⊢ (𝐾 ∈ ℕ → (3
· 𝐾) ∈
ℕ) |
| 7 | 2, 6 | eqeltrid 2837 |
. . . 4
⊢ (𝐾 ∈ ℕ → 𝑁 ∈
ℕ) |
| 8 | | zmodfzo 13917 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 mod 𝑁) ∈ (0..^𝑁)) |
| 9 | 1, 7, 8 | syl2anc 584 |
. . 3
⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ∈ (0..^𝑁)) |
| 10 | | opeq2 4856 |
. . . . . . 7
⊢ (𝑥 = (𝐾 mod 𝑁) → 〈0, 𝑥〉 = 〈0, (𝐾 mod 𝑁)〉) |
| 11 | | oveq1 7421 |
. . . . . . . . 9
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 1) = ((𝐾 mod 𝑁) + 1)) |
| 12 | 11 | oveq1d 7429 |
. . . . . . . 8
⊢ (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 1) mod 𝑁) = (((𝐾 mod 𝑁) + 1) mod 𝑁)) |
| 13 | 12 | opeq2d 4862 |
. . . . . . 7
⊢ (𝑥 = (𝐾 mod 𝑁) → 〈0, ((𝑥 + 1) mod 𝑁)〉 = 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉) |
| 14 | 10, 13 | preq12d 4723 |
. . . . . 6
⊢ (𝑥 = (𝐾 mod 𝑁) → {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉}) |
| 15 | 14 | eqeq2d 2745 |
. . . . 5
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ↔ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉})) |
| 16 | | opeq2 4856 |
. . . . . . 7
⊢ (𝑥 = (𝐾 mod 𝑁) → 〈1, 𝑥〉 = 〈1, (𝐾 mod 𝑁)〉) |
| 17 | 10, 16 | preq12d 4723 |
. . . . . 6
⊢ (𝑥 = (𝐾 mod 𝑁) → {〈0, 𝑥〉, 〈1, 𝑥〉} = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉}) |
| 18 | 17 | eqeq2d 2745 |
. . . . 5
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ↔ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉})) |
| 19 | | oveq1 7421 |
. . . . . . . . 9
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 𝐾) = ((𝐾 mod 𝑁) + 𝐾)) |
| 20 | 19 | oveq1d 7429 |
. . . . . . . 8
⊢ (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 𝐾) mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) |
| 21 | 20 | opeq2d 4862 |
. . . . . . 7
⊢ (𝑥 = (𝐾 mod 𝑁) → 〈1, ((𝑥 + 𝐾) mod 𝑁)〉 = 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉) |
| 22 | 16, 21 | preq12d 4723 |
. . . . . 6
⊢ (𝑥 = (𝐾 mod 𝑁) → {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}) |
| 23 | 22 | eqeq2d 2745 |
. . . . 5
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ↔ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉})) |
| 24 | 15, 18, 23 | 3orbi123d 1436 |
. . . 4
⊢ (𝑥 = (𝐾 mod 𝑁) → ((𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ (𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉} ∨ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}))) |
| 25 | 24 | adantl 481 |
. . 3
⊢ ((𝐾 ∈ ℕ ∧ 𝑥 = (𝐾 mod 𝑁)) → ((𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ (𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉} ∨ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}))) |
| 26 | | gpg3kgrtriex.e |
. . . . 5
⊢ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} |
| 27 | 2 | gpg3kgrtriexlem2 47986 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) |
| 28 | 27 | opeq2d 4862 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 〈1,
(-𝐾 mod 𝑁)〉 = 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉) |
| 29 | 28 | preq2d 4722 |
. . . . 5
⊢ (𝐾 ∈ ℕ → {〈1,
(𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}) |
| 30 | 26, 29 | eqtrid 2781 |
. . . 4
⊢ (𝐾 ∈ ℕ → 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}) |
| 31 | 30 | 3mix3d 1338 |
. . 3
⊢ (𝐾 ∈ ℕ → (𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉} ∨ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉})) |
| 32 | 9, 25, 31 | rspcedvd 3608 |
. 2
⊢ (𝐾 ∈ ℕ →
∃𝑥 ∈ (0..^𝑁)(𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})) |
| 33 | | 3z 12634 |
. . . . . 6
⊢ 3 ∈
ℤ |
| 34 | 33 | a1i 11 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 3 ∈
ℤ) |
| 35 | 34, 1 | zmulcld 12712 |
. . . . 5
⊢ (𝐾 ∈ ℕ → (3
· 𝐾) ∈
ℤ) |
| 36 | | 3t1e3 12414 |
. . . . . 6
⊢ (3
· 1) = 3 |
| 37 | | nnge1 12277 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 1 ≤
𝐾) |
| 38 | | 1red 11245 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 1 ∈
ℝ) |
| 39 | | nnre 12256 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℝ) |
| 40 | | 3re 12329 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
| 41 | | 3pos 12354 |
. . . . . . . . . 10
⊢ 0 <
3 |
| 42 | 40, 41 | pm3.2i 470 |
. . . . . . . . 9
⊢ (3 ∈
ℝ ∧ 0 < 3) |
| 43 | 42 | a1i 11 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → (3 ∈
ℝ ∧ 0 < 3)) |
| 44 | | lemul2 12103 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝐾
∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3
· 𝐾))) |
| 45 | 38, 39, 43, 44 | syl3anc 1372 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → (1 ≤
𝐾 ↔ (3 · 1)
≤ (3 · 𝐾))) |
| 46 | 37, 45 | mpbid 232 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (3
· 1) ≤ (3 · 𝐾)) |
| 47 | 36, 46 | eqbrtrrid 5161 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 3 ≤ (3
· 𝐾)) |
| 48 | | eluz2 12867 |
. . . . 5
⊢ ((3
· 𝐾) ∈
(ℤ≥‘3) ↔ (3 ∈ ℤ ∧ (3 ·
𝐾) ∈ ℤ ∧ 3
≤ (3 · 𝐾))) |
| 49 | 34, 35, 47, 48 | syl3anbrc 1343 |
. . . 4
⊢ (𝐾 ∈ ℕ → (3
· 𝐾) ∈
(ℤ≥‘3)) |
| 50 | 2, 49 | eqeltrid 2837 |
. . 3
⊢ (𝐾 ∈ ℕ → 𝑁 ∈
(ℤ≥‘3)) |
| 51 | 40 | a1i 11 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 3 ∈
ℝ) |
| 52 | 51, 39 | remulcld 11274 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → (3
· 𝐾) ∈
ℝ) |
| 53 | 2, 52 | eqeltrid 2837 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝑁 ∈
ℝ) |
| 54 | 53 | rehalfcld 12497 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (𝑁 / 2) ∈
ℝ) |
| 55 | 54 | ceilcld 13866 |
. . . . 5
⊢ (𝐾 ∈ ℕ →
(⌈‘(𝑁 / 2))
∈ ℤ) |
| 56 | 55 | zred 12706 |
. . . . . 6
⊢ (𝐾 ∈ ℕ →
(⌈‘(𝑁 / 2))
∈ ℝ) |
| 57 | 52 | rehalfcld 12497 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ → ((3
· 𝐾) / 2) ∈
ℝ) |
| 58 | 57 | ceilcld 13866 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ →
(⌈‘((3 · 𝐾) / 2)) ∈ ℤ) |
| 59 | 58 | zred 12706 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ →
(⌈‘((3 · 𝐾) / 2)) ∈ ℝ) |
| 60 | | gpg3kgrtriexlem1 47985 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3
· 𝐾) /
2))) |
| 61 | 39, 59, 60 | ltled 11392 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3
· 𝐾) /
2))) |
| 62 | 2 | oveq1i 7424 |
. . . . . . . 8
⊢ (𝑁 / 2) = ((3 · 𝐾) / 2) |
| 63 | 62 | fveq2i 6890 |
. . . . . . 7
⊢
(⌈‘(𝑁 /
2)) = (⌈‘((3 · 𝐾) / 2)) |
| 64 | 61, 63 | breqtrrdi 5167 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2))) |
| 65 | 38, 39, 56, 37, 64 | letrd 11401 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 1 ≤
(⌈‘(𝑁 /
2))) |
| 66 | | elnnz1 12627 |
. . . . 5
⊢
((⌈‘(𝑁 /
2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤
(⌈‘(𝑁 /
2)))) |
| 67 | 55, 65, 66 | sylanbrc 583 |
. . . 4
⊢ (𝐾 ∈ ℕ →
(⌈‘(𝑁 / 2))
∈ ℕ) |
| 68 | 60, 63 | breqtrrdi 5167 |
. . . 4
⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2))) |
| 69 | | elfzo1 13735 |
. . . 4
⊢ (𝐾 ∈
(1..^(⌈‘(𝑁 /
2))) ↔ (𝐾 ∈
ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) |
| 70 | 5, 67, 68, 69 | syl3anbrc 1343 |
. . 3
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
(1..^(⌈‘(𝑁 /
2)))) |
| 71 | | eqid 2734 |
. . . 4
⊢
(0..^𝑁) = (0..^𝑁) |
| 72 | | eqid 2734 |
. . . 4
⊢
(1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2))) |
| 73 | | gpg3kgrtriex.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| 74 | | eqid 2734 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 75 | 71, 72, 73, 74 | gpgedgel 47953 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
| 76 | 50, 70, 75 | syl2anc 584 |
. 2
⊢ (𝐾 ∈ ℕ → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
| 77 | 32, 76 | mpbird 257 |
1
⊢ (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺)) |