Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem6 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem6 48032
Description: Lemma 6 for gpg3kgrtriex 48033: 𝐸 is an edge in the generalized Petersen graph G(N,K) with 𝑁 = 3 · 𝐾. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
gpg3kgrtriex.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpg3kgrtriex.e 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
Assertion
Ref Expression
gpg3kgrtriexlem6 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))

Proof of Theorem gpg3kgrtriexlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnz 12566 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
2 gpg3kgrtriex.n . . . . 5 𝑁 = (3 · 𝐾)
3 3nn 12276 . . . . . . 7 3 ∈ ℕ
43a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
5 id 22 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
64, 5nnmulcld 12250 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
72, 6eqeltrid 2833 . . . 4 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
8 zmodfzo 13868 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 mod 𝑁) ∈ (0..^𝑁))
91, 7, 8syl2anc 584 . . 3 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ∈ (0..^𝑁))
10 opeq2 4846 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, 𝑥⟩ = ⟨0, (𝐾 mod 𝑁)⟩)
11 oveq1 7401 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 1) = ((𝐾 mod 𝑁) + 1))
1211oveq1d 7409 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 1) mod 𝑁) = (((𝐾 mod 𝑁) + 1) mod 𝑁))
1312opeq2d 4852 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ = ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩)
1410, 13preq12d 4713 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩})
1514eqeq2d 2741 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩}))
16 opeq2 4846 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, 𝑥⟩ = ⟨1, (𝐾 mod 𝑁)⟩)
1710, 16preq12d 4713 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩})
1817eqeq2d 2741 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩}))
19 oveq1 7401 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 𝐾) = ((𝐾 mod 𝑁) + 𝐾))
2019oveq1d 7409 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 𝐾) mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2120opeq2d 4852 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2216, 21preq12d 4713 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
2322eqeq2d 2741 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
2415, 18, 233orbi123d 1437 . . . 4 (𝑥 = (𝐾 mod 𝑁) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
2524adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ 𝑥 = (𝐾 mod 𝑁)) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
26 gpg3kgrtriex.e . . . . 5 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
272gpg3kgrtriexlem2 48028 . . . . . . 7 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2827opeq2d 4852 . . . . . 6 (𝐾 ∈ ℕ → ⟨1, (-𝐾 mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2928preq2d 4712 . . . . 5 (𝐾 ∈ ℕ → {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
3026, 29eqtrid 2777 . . . 4 (𝐾 ∈ ℕ → 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
31303mix3d 1339 . . 3 (𝐾 ∈ ℕ → (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
329, 25, 31rspcedvd 3599 . 2 (𝐾 ∈ ℕ → ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
33 3z 12582 . . . . . 6 3 ∈ ℤ
3433a1i 11 . . . . 5 (𝐾 ∈ ℕ → 3 ∈ ℤ)
3534, 1zmulcld 12660 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℤ)
36 3t1e3 12362 . . . . . 6 (3 · 1) = 3
37 nnge1 12225 . . . . . . 7 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
38 1red 11193 . . . . . . . 8 (𝐾 ∈ ℕ → 1 ∈ ℝ)
39 nnre 12204 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
40 3re 12277 . . . . . . . . . 10 3 ∈ ℝ
41 3pos 12302 . . . . . . . . . 10 0 < 3
4240, 41pm3.2i 470 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
4342a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → (3 ∈ ℝ ∧ 0 < 3))
44 lemul2 12051 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4538, 39, 43, 44syl3anc 1373 . . . . . . 7 (𝐾 ∈ ℕ → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4637, 45mpbid 232 . . . . . 6 (𝐾 ∈ ℕ → (3 · 1) ≤ (3 · 𝐾))
4736, 46eqbrtrrid 5151 . . . . 5 (𝐾 ∈ ℕ → 3 ≤ (3 · 𝐾))
48 eluz2 12815 . . . . 5 ((3 · 𝐾) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ (3 · 𝐾) ∈ ℤ ∧ 3 ≤ (3 · 𝐾)))
4934, 35, 47, 48syl3anbrc 1344 . . . 4 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ (ℤ‘3))
502, 49eqeltrid 2833 . . 3 (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ‘3))
5140a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 3 ∈ ℝ)
5251, 39remulcld 11222 . . . . . . . 8 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ)
532, 52eqeltrid 2833 . . . . . . 7 (𝐾 ∈ ℕ → 𝑁 ∈ ℝ)
5453rehalfcld 12445 . . . . . 6 (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ)
5554ceilcld 13817 . . . . 5 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ)
5655zred 12654 . . . . . 6 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℝ)
5752rehalfcld 12445 . . . . . . . . . 10 (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ∈ ℝ)
5857ceilcld 13817 . . . . . . . . 9 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℤ)
5958zred 12654 . . . . . . . 8 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℝ)
60 gpg3kgrtriexlem1 48027 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2)))
6139, 59, 60ltled 11340 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3 · 𝐾) / 2)))
622oveq1i 7404 . . . . . . . 8 (𝑁 / 2) = ((3 · 𝐾) / 2)
6362fveq2i 6868 . . . . . . 7 (⌈‘(𝑁 / 2)) = (⌈‘((3 · 𝐾) / 2))
6461, 63breqtrrdi 5157 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2)))
6538, 39, 56, 37, 64letrd 11349 . . . . 5 (𝐾 ∈ ℕ → 1 ≤ (⌈‘(𝑁 / 2)))
66 elnnz1 12575 . . . . 5 ((⌈‘(𝑁 / 2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌈‘(𝑁 / 2))))
6755, 65, 66sylanbrc 583 . . . 4 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ)
6860, 63breqtrrdi 5157 . . . 4 (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2)))
69 elfzo1 13686 . . . 4 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2))))
705, 67, 68, 69syl3anbrc 1344 . . 3 (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
71 eqid 2730 . . . 4 (0..^𝑁) = (0..^𝑁)
72 eqid 2730 . . . 4 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
73 gpg3kgrtriex.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
74 eqid 2730 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
7571, 72, 73, 74gpgedgel 47996 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7650, 70, 75syl2anc 584 . 2 (𝐾 ∈ ℕ → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7732, 76mpbird 257 1 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wrex 3055  {cpr 4599  cop 4603   class class class wbr 5115  cfv 6519  (class class class)co 7394  cr 11085  0cc0 11086  1c1 11087   + caddc 11089   · cmul 11091   < clt 11226  cle 11227  -cneg 11424   / cdiv 11851  cn 12197  2c2 12252  3c3 12253  cz 12545  cuz 12809  ..^cfzo 13628  cceil 13765   mod cmo 13843  Edgcedg 28981   gPetersenGr cgpg 47986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-oadd 8447  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9411  df-inf 9412  df-dju 9872  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-xnn0 12532  df-z 12546  df-dec 12666  df-uz 12810  df-rp 12966  df-fz 13482  df-fzo 13629  df-fl 13766  df-ceil 13767  df-mod 13844  df-hash 14306  df-dvds 16230  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-edgf 28923  df-iedg 28933  df-edg 28982  df-gpg 47987
This theorem is referenced by:  gpg3kgrtriex  48033
  Copyright terms: Public domain W3C validator