Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem6 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem6 48212
Description: Lemma 6 for gpg3kgrtriex 48213: 𝐸 is an edge in the generalized Petersen graph G(N,K) with 𝑁 = 3 · 𝐾. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
gpg3kgrtriex.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpg3kgrtriex.e 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
Assertion
Ref Expression
gpg3kgrtriexlem6 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))

Proof of Theorem gpg3kgrtriexlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnz 12496 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
2 gpg3kgrtriex.n . . . . 5 𝑁 = (3 · 𝐾)
3 3nn 12211 . . . . . . 7 3 ∈ ℕ
43a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
5 id 22 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
64, 5nnmulcld 12185 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
72, 6eqeltrid 2837 . . . 4 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
8 zmodfzo 13800 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 mod 𝑁) ∈ (0..^𝑁))
91, 7, 8syl2anc 584 . . 3 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ∈ (0..^𝑁))
10 opeq2 4825 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, 𝑥⟩ = ⟨0, (𝐾 mod 𝑁)⟩)
11 oveq1 7359 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 1) = ((𝐾 mod 𝑁) + 1))
1211oveq1d 7367 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 1) mod 𝑁) = (((𝐾 mod 𝑁) + 1) mod 𝑁))
1312opeq2d 4831 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ = ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩)
1410, 13preq12d 4693 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩})
1514eqeq2d 2744 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩}))
16 opeq2 4825 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, 𝑥⟩ = ⟨1, (𝐾 mod 𝑁)⟩)
1710, 16preq12d 4693 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩})
1817eqeq2d 2744 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩}))
19 oveq1 7359 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 𝐾) = ((𝐾 mod 𝑁) + 𝐾))
2019oveq1d 7367 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 𝐾) mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2120opeq2d 4831 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2216, 21preq12d 4693 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
2322eqeq2d 2744 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
2415, 18, 233orbi123d 1437 . . . 4 (𝑥 = (𝐾 mod 𝑁) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
2524adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ 𝑥 = (𝐾 mod 𝑁)) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
26 gpg3kgrtriex.e . . . . 5 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
272gpg3kgrtriexlem2 48208 . . . . . . 7 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2827opeq2d 4831 . . . . . 6 (𝐾 ∈ ℕ → ⟨1, (-𝐾 mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2928preq2d 4692 . . . . 5 (𝐾 ∈ ℕ → {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
3026, 29eqtrid 2780 . . . 4 (𝐾 ∈ ℕ → 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
31303mix3d 1339 . . 3 (𝐾 ∈ ℕ → (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
329, 25, 31rspcedvd 3575 . 2 (𝐾 ∈ ℕ → ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
33 3z 12511 . . . . . 6 3 ∈ ℤ
3433a1i 11 . . . . 5 (𝐾 ∈ ℕ → 3 ∈ ℤ)
3534, 1zmulcld 12589 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℤ)
36 3t1e3 12292 . . . . . 6 (3 · 1) = 3
37 nnge1 12160 . . . . . . 7 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
38 1red 11120 . . . . . . . 8 (𝐾 ∈ ℕ → 1 ∈ ℝ)
39 nnre 12139 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
40 3re 12212 . . . . . . . . . 10 3 ∈ ℝ
41 3pos 12237 . . . . . . . . . 10 0 < 3
4240, 41pm3.2i 470 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
4342a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → (3 ∈ ℝ ∧ 0 < 3))
44 lemul2 11981 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4538, 39, 43, 44syl3anc 1373 . . . . . . 7 (𝐾 ∈ ℕ → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4637, 45mpbid 232 . . . . . 6 (𝐾 ∈ ℕ → (3 · 1) ≤ (3 · 𝐾))
4736, 46eqbrtrrid 5129 . . . . 5 (𝐾 ∈ ℕ → 3 ≤ (3 · 𝐾))
48 eluz2 12744 . . . . 5 ((3 · 𝐾) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ (3 · 𝐾) ∈ ℤ ∧ 3 ≤ (3 · 𝐾)))
4934, 35, 47, 48syl3anbrc 1344 . . . 4 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ (ℤ‘3))
502, 49eqeltrid 2837 . . 3 (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ‘3))
5140a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 3 ∈ ℝ)
5251, 39remulcld 11149 . . . . . . . 8 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ)
532, 52eqeltrid 2837 . . . . . . 7 (𝐾 ∈ ℕ → 𝑁 ∈ ℝ)
5453rehalfcld 12375 . . . . . 6 (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ)
5554ceilcld 13749 . . . . 5 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ)
5655zred 12583 . . . . . 6 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℝ)
5752rehalfcld 12375 . . . . . . . . . 10 (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ∈ ℝ)
5857ceilcld 13749 . . . . . . . . 9 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℤ)
5958zred 12583 . . . . . . . 8 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℝ)
60 gpg3kgrtriexlem1 48207 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2)))
6139, 59, 60ltled 11268 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3 · 𝐾) / 2)))
622oveq1i 7362 . . . . . . . 8 (𝑁 / 2) = ((3 · 𝐾) / 2)
6362fveq2i 6831 . . . . . . 7 (⌈‘(𝑁 / 2)) = (⌈‘((3 · 𝐾) / 2))
6461, 63breqtrrdi 5135 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2)))
6538, 39, 56, 37, 64letrd 11277 . . . . 5 (𝐾 ∈ ℕ → 1 ≤ (⌈‘(𝑁 / 2)))
66 elnnz1 12504 . . . . 5 ((⌈‘(𝑁 / 2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌈‘(𝑁 / 2))))
6755, 65, 66sylanbrc 583 . . . 4 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ)
6860, 63breqtrrdi 5135 . . . 4 (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2)))
69 elfzo1 13614 . . . 4 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2))))
705, 67, 68, 69syl3anbrc 1344 . . 3 (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
71 eqid 2733 . . . 4 (0..^𝑁) = (0..^𝑁)
72 eqid 2733 . . . 4 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
73 gpg3kgrtriex.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
74 eqid 2733 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
7571, 72, 73, 74gpgedgel 48174 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7650, 70, 75syl2anc 584 . 2 (𝐾 ∈ ℕ → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7732, 76mpbird 257 1 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2113  wrex 3057  {cpr 4577  cop 4581   class class class wbr 5093  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cle 11154  -cneg 11352   / cdiv 11781  cn 12132  2c2 12187  3c3 12188  cz 12475  cuz 12738  ..^cfzo 13556  cceil 13697   mod cmo 13775  Edgcedg 29027   gPetersenGr cgpg 48164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-ceil 13699  df-mod 13776  df-hash 14240  df-dvds 16166  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-edgf 28969  df-iedg 28979  df-edg 29028  df-gpg 48165
This theorem is referenced by:  gpg3kgrtriex  48213
  Copyright terms: Public domain W3C validator