Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem6 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem6 47993
Description: Lemma 6 for gpg3kgrtriex 47994: 𝐸 is an edge in the generalized Petersen graph G(N,K) with 𝑁 = 3 · 𝐾. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
gpg3kgrtriex.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpg3kgrtriex.e 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
Assertion
Ref Expression
gpg3kgrtriexlem6 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))

Proof of Theorem gpg3kgrtriexlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnz 12638 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
2 gpg3kgrtriex.n . . . . 5 𝑁 = (3 · 𝐾)
3 3nn 12349 . . . . . . 7 3 ∈ ℕ
43a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
5 id 22 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
64, 5nnmulcld 12323 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
72, 6eqeltrid 2844 . . . 4 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
8 zmodfzo 13937 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 mod 𝑁) ∈ (0..^𝑁))
91, 7, 8syl2anc 584 . . 3 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ∈ (0..^𝑁))
10 opeq2 4880 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, 𝑥⟩ = ⟨0, (𝐾 mod 𝑁)⟩)
11 oveq1 7442 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 1) = ((𝐾 mod 𝑁) + 1))
1211oveq1d 7450 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 1) mod 𝑁) = (((𝐾 mod 𝑁) + 1) mod 𝑁))
1312opeq2d 4886 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ = ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩)
1410, 13preq12d 4747 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩})
1514eqeq2d 2747 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩}))
16 opeq2 4880 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, 𝑥⟩ = ⟨1, (𝐾 mod 𝑁)⟩)
1710, 16preq12d 4747 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩})
1817eqeq2d 2747 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩}))
19 oveq1 7442 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 𝐾) = ((𝐾 mod 𝑁) + 𝐾))
2019oveq1d 7450 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 𝐾) mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2120opeq2d 4886 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2216, 21preq12d 4747 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
2322eqeq2d 2747 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
2415, 18, 233orbi123d 1435 . . . 4 (𝑥 = (𝐾 mod 𝑁) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
2524adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ 𝑥 = (𝐾 mod 𝑁)) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
26 gpg3kgrtriex.e . . . . 5 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
272gpg3kgrtriexlem2 47989 . . . . . . 7 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2827opeq2d 4886 . . . . . 6 (𝐾 ∈ ℕ → ⟨1, (-𝐾 mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2928preq2d 4746 . . . . 5 (𝐾 ∈ ℕ → {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
3026, 29eqtrid 2788 . . . 4 (𝐾 ∈ ℕ → 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
31303mix3d 1338 . . 3 (𝐾 ∈ ℕ → (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
329, 25, 31rspcedvd 3625 . 2 (𝐾 ∈ ℕ → ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
33 3z 12654 . . . . . 6 3 ∈ ℤ
3433a1i 11 . . . . 5 (𝐾 ∈ ℕ → 3 ∈ ℤ)
3534, 1zmulcld 12732 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℤ)
36 3t1e3 12435 . . . . . 6 (3 · 1) = 3
37 nnge1 12298 . . . . . . 7 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
38 1red 11266 . . . . . . . 8 (𝐾 ∈ ℕ → 1 ∈ ℝ)
39 nnre 12277 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
40 3re 12350 . . . . . . . . . 10 3 ∈ ℝ
41 3pos 12375 . . . . . . . . . 10 0 < 3
4240, 41pm3.2i 470 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
4342a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → (3 ∈ ℝ ∧ 0 < 3))
44 lemul2 12124 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4538, 39, 43, 44syl3anc 1371 . . . . . . 7 (𝐾 ∈ ℕ → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4637, 45mpbid 232 . . . . . 6 (𝐾 ∈ ℕ → (3 · 1) ≤ (3 · 𝐾))
4736, 46eqbrtrrid 5185 . . . . 5 (𝐾 ∈ ℕ → 3 ≤ (3 · 𝐾))
48 eluz2 12888 . . . . 5 ((3 · 𝐾) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ (3 · 𝐾) ∈ ℤ ∧ 3 ≤ (3 · 𝐾)))
4934, 35, 47, 48syl3anbrc 1343 . . . 4 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ (ℤ‘3))
502, 49eqeltrid 2844 . . 3 (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ‘3))
5140a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 3 ∈ ℝ)
5251, 39remulcld 11295 . . . . . . . 8 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ)
532, 52eqeltrid 2844 . . . . . . 7 (𝐾 ∈ ℕ → 𝑁 ∈ ℝ)
5453rehalfcld 12517 . . . . . 6 (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ)
5554ceilcld 13886 . . . . 5 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ)
5655zred 12726 . . . . . 6 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℝ)
5752rehalfcld 12517 . . . . . . . . . 10 (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ∈ ℝ)
5857ceilcld 13886 . . . . . . . . 9 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℤ)
5958zred 12726 . . . . . . . 8 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℝ)
60 gpg3kgrtriexlem1 47988 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2)))
6139, 59, 60ltled 11413 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3 · 𝐾) / 2)))
622oveq1i 7445 . . . . . . . 8 (𝑁 / 2) = ((3 · 𝐾) / 2)
6362fveq2i 6914 . . . . . . 7 (⌈‘(𝑁 / 2)) = (⌈‘((3 · 𝐾) / 2))
6461, 63breqtrrdi 5191 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2)))
6538, 39, 56, 37, 64letrd 11422 . . . . 5 (𝐾 ∈ ℕ → 1 ≤ (⌈‘(𝑁 / 2)))
66 elnnz1 12647 . . . . 5 ((⌈‘(𝑁 / 2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌈‘(𝑁 / 2))))
6755, 65, 66sylanbrc 583 . . . 4 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ)
6860, 63breqtrrdi 5191 . . . 4 (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2)))
69 elfzo1 13755 . . . 4 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2))))
705, 67, 68, 69syl3anbrc 1343 . . 3 (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
71 eqid 2736 . . . 4 (0..^𝑁) = (0..^𝑁)
72 eqid 2736 . . . 4 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
73 gpg3kgrtriex.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
74 eqid 2736 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
7571, 72, 73, 74gpgedgel 47956 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7650, 70, 75syl2anc 584 . 2 (𝐾 ∈ ℕ → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7732, 76mpbird 257 1 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1538  wcel 2107  wrex 3069  {cpr 4634  cop 4638   class class class wbr 5149  cfv 6566  (class class class)co 7435  cr 11158  0cc0 11159  1c1 11160   + caddc 11162   · cmul 11164   < clt 11299  cle 11300  -cneg 11497   / cdiv 11924  cn 12270  2c2 12325  3c3 12326  cz 12617  cuz 12882  ..^cfzo 13697  cceil 13834   mod cmo 13912  Edgcedg 29087   gPetersenGr cgpg 47948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-oadd 8515  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-sup 9486  df-inf 9487  df-dju 9945  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-xnn0 12604  df-z 12618  df-dec 12738  df-uz 12883  df-rp 13039  df-fz 13551  df-fzo 13698  df-fl 13835  df-ceil 13836  df-mod 13913  df-hash 14373  df-dvds 16294  df-struct 17187  df-slot 17222  df-ndx 17234  df-base 17252  df-edgf 29027  df-iedg 29039  df-edg 29088  df-gpg 47949
This theorem is referenced by:  gpg3kgrtriex  47994
  Copyright terms: Public domain W3C validator