Step | Hyp | Ref
| Expression |
1 | | nnz 12638 |
. . . 4
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℤ) |
2 | | gpg3kgrtriex.n |
. . . . 5
⊢ 𝑁 = (3 · 𝐾) |
3 | | 3nn 12349 |
. . . . . . 7
⊢ 3 ∈
ℕ |
4 | 3 | a1i 11 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 3 ∈
ℕ) |
5 | | id 22 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℕ) |
6 | 4, 5 | nnmulcld 12323 |
. . . . 5
⊢ (𝐾 ∈ ℕ → (3
· 𝐾) ∈
ℕ) |
7 | 2, 6 | eqeltrid 2844 |
. . . 4
⊢ (𝐾 ∈ ℕ → 𝑁 ∈
ℕ) |
8 | | zmodfzo 13937 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 mod 𝑁) ∈ (0..^𝑁)) |
9 | 1, 7, 8 | syl2anc 584 |
. . 3
⊢ (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ∈ (0..^𝑁)) |
10 | | opeq2 4880 |
. . . . . . 7
⊢ (𝑥 = (𝐾 mod 𝑁) → 〈0, 𝑥〉 = 〈0, (𝐾 mod 𝑁)〉) |
11 | | oveq1 7442 |
. . . . . . . . 9
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 1) = ((𝐾 mod 𝑁) + 1)) |
12 | 11 | oveq1d 7450 |
. . . . . . . 8
⊢ (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 1) mod 𝑁) = (((𝐾 mod 𝑁) + 1) mod 𝑁)) |
13 | 12 | opeq2d 4886 |
. . . . . . 7
⊢ (𝑥 = (𝐾 mod 𝑁) → 〈0, ((𝑥 + 1) mod 𝑁)〉 = 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉) |
14 | 10, 13 | preq12d 4747 |
. . . . . 6
⊢ (𝑥 = (𝐾 mod 𝑁) → {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉}) |
15 | 14 | eqeq2d 2747 |
. . . . 5
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ↔ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉})) |
16 | | opeq2 4880 |
. . . . . . 7
⊢ (𝑥 = (𝐾 mod 𝑁) → 〈1, 𝑥〉 = 〈1, (𝐾 mod 𝑁)〉) |
17 | 10, 16 | preq12d 4747 |
. . . . . 6
⊢ (𝑥 = (𝐾 mod 𝑁) → {〈0, 𝑥〉, 〈1, 𝑥〉} = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉}) |
18 | 17 | eqeq2d 2747 |
. . . . 5
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ↔ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉})) |
19 | | oveq1 7442 |
. . . . . . . . 9
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 𝐾) = ((𝐾 mod 𝑁) + 𝐾)) |
20 | 19 | oveq1d 7450 |
. . . . . . . 8
⊢ (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 𝐾) mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) |
21 | 20 | opeq2d 4886 |
. . . . . . 7
⊢ (𝑥 = (𝐾 mod 𝑁) → 〈1, ((𝑥 + 𝐾) mod 𝑁)〉 = 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉) |
22 | 16, 21 | preq12d 4747 |
. . . . . 6
⊢ (𝑥 = (𝐾 mod 𝑁) → {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}) |
23 | 22 | eqeq2d 2747 |
. . . . 5
⊢ (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉} ↔ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉})) |
24 | 15, 18, 23 | 3orbi123d 1435 |
. . . 4
⊢ (𝑥 = (𝐾 mod 𝑁) → ((𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ (𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉} ∨ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}))) |
25 | 24 | adantl 481 |
. . 3
⊢ ((𝐾 ∈ ℕ ∧ 𝑥 = (𝐾 mod 𝑁)) → ((𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) ↔ (𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉} ∨ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}))) |
26 | | gpg3kgrtriex.e |
. . . . 5
⊢ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} |
27 | 2 | gpg3kgrtriexlem2 47989 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) |
28 | 27 | opeq2d 4886 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 〈1,
(-𝐾 mod 𝑁)〉 = 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉) |
29 | 28 | preq2d 4746 |
. . . . 5
⊢ (𝐾 ∈ ℕ → {〈1,
(𝐾 mod 𝑁)〉, 〈1, (-𝐾 mod 𝑁)〉} = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}) |
30 | 26, 29 | eqtrid 2788 |
. . . 4
⊢ (𝐾 ∈ ℕ → 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉}) |
31 | 30 | 3mix3d 1338 |
. . 3
⊢ (𝐾 ∈ ℕ → (𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈0, (((𝐾 mod 𝑁) + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, (𝐾 mod 𝑁)〉, 〈1, (𝐾 mod 𝑁)〉} ∨ 𝐸 = {〈1, (𝐾 mod 𝑁)〉, 〈1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)〉})) |
32 | 9, 25, 31 | rspcedvd 3625 |
. 2
⊢ (𝐾 ∈ ℕ →
∃𝑥 ∈ (0..^𝑁)(𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})) |
33 | | 3z 12654 |
. . . . . 6
⊢ 3 ∈
ℤ |
34 | 33 | a1i 11 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 3 ∈
ℤ) |
35 | 34, 1 | zmulcld 12732 |
. . . . 5
⊢ (𝐾 ∈ ℕ → (3
· 𝐾) ∈
ℤ) |
36 | | 3t1e3 12435 |
. . . . . 6
⊢ (3
· 1) = 3 |
37 | | nnge1 12298 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 1 ≤
𝐾) |
38 | | 1red 11266 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 1 ∈
ℝ) |
39 | | nnre 12277 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
ℝ) |
40 | | 3re 12350 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
41 | | 3pos 12375 |
. . . . . . . . . 10
⊢ 0 <
3 |
42 | 40, 41 | pm3.2i 470 |
. . . . . . . . 9
⊢ (3 ∈
ℝ ∧ 0 < 3) |
43 | 42 | a1i 11 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → (3 ∈
ℝ ∧ 0 < 3)) |
44 | | lemul2 12124 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝐾
∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3
· 𝐾))) |
45 | 38, 39, 43, 44 | syl3anc 1371 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → (1 ≤
𝐾 ↔ (3 · 1)
≤ (3 · 𝐾))) |
46 | 37, 45 | mpbid 232 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (3
· 1) ≤ (3 · 𝐾)) |
47 | 36, 46 | eqbrtrrid 5185 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 3 ≤ (3
· 𝐾)) |
48 | | eluz2 12888 |
. . . . 5
⊢ ((3
· 𝐾) ∈
(ℤ≥‘3) ↔ (3 ∈ ℤ ∧ (3 ·
𝐾) ∈ ℤ ∧ 3
≤ (3 · 𝐾))) |
49 | 34, 35, 47, 48 | syl3anbrc 1343 |
. . . 4
⊢ (𝐾 ∈ ℕ → (3
· 𝐾) ∈
(ℤ≥‘3)) |
50 | 2, 49 | eqeltrid 2844 |
. . 3
⊢ (𝐾 ∈ ℕ → 𝑁 ∈
(ℤ≥‘3)) |
51 | 40 | a1i 11 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ → 3 ∈
ℝ) |
52 | 51, 39 | remulcld 11295 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → (3
· 𝐾) ∈
ℝ) |
53 | 2, 52 | eqeltrid 2844 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝑁 ∈
ℝ) |
54 | 53 | rehalfcld 12517 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → (𝑁 / 2) ∈
ℝ) |
55 | 54 | ceilcld 13886 |
. . . . 5
⊢ (𝐾 ∈ ℕ →
(⌈‘(𝑁 / 2))
∈ ℤ) |
56 | 55 | zred 12726 |
. . . . . 6
⊢ (𝐾 ∈ ℕ →
(⌈‘(𝑁 / 2))
∈ ℝ) |
57 | 52 | rehalfcld 12517 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ℕ → ((3
· 𝐾) / 2) ∈
ℝ) |
58 | 57 | ceilcld 13886 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ →
(⌈‘((3 · 𝐾) / 2)) ∈ ℤ) |
59 | 58 | zred 12726 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ →
(⌈‘((3 · 𝐾) / 2)) ∈ ℝ) |
60 | | gpg3kgrtriexlem1 47988 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3
· 𝐾) /
2))) |
61 | 39, 59, 60 | ltled 11413 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3
· 𝐾) /
2))) |
62 | 2 | oveq1i 7445 |
. . . . . . . 8
⊢ (𝑁 / 2) = ((3 · 𝐾) / 2) |
63 | 62 | fveq2i 6914 |
. . . . . . 7
⊢
(⌈‘(𝑁 /
2)) = (⌈‘((3 · 𝐾) / 2)) |
64 | 61, 63 | breqtrrdi 5191 |
. . . . . 6
⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2))) |
65 | 38, 39, 56, 37, 64 | letrd 11422 |
. . . . 5
⊢ (𝐾 ∈ ℕ → 1 ≤
(⌈‘(𝑁 /
2))) |
66 | | elnnz1 12647 |
. . . . 5
⊢
((⌈‘(𝑁 /
2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤
(⌈‘(𝑁 /
2)))) |
67 | 55, 65, 66 | sylanbrc 583 |
. . . 4
⊢ (𝐾 ∈ ℕ →
(⌈‘(𝑁 / 2))
∈ ℕ) |
68 | 60, 63 | breqtrrdi 5191 |
. . . 4
⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2))) |
69 | | elfzo1 13755 |
. . . 4
⊢ (𝐾 ∈
(1..^(⌈‘(𝑁 /
2))) ↔ (𝐾 ∈
ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) |
70 | 5, 67, 68, 69 | syl3anbrc 1343 |
. . 3
⊢ (𝐾 ∈ ℕ → 𝐾 ∈
(1..^(⌈‘(𝑁 /
2)))) |
71 | | eqid 2736 |
. . . 4
⊢
(0..^𝑁) = (0..^𝑁) |
72 | | eqid 2736 |
. . . 4
⊢
(1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2))) |
73 | | gpg3kgrtriex.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
74 | | eqid 2736 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
75 | 71, 72, 73, 74 | gpgedgel 47956 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
76 | 50, 70, 75 | syl2anc 584 |
. 2
⊢ (𝐾 ∈ ℕ → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝐸 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝐸 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}))) |
77 | 32, 76 | mpbird 257 |
1
⊢ (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺)) |