Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem6 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem6 48118
Description: Lemma 6 for gpg3kgrtriex 48119: 𝐸 is an edge in the generalized Petersen graph G(N,K) with 𝑁 = 3 · 𝐾. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
gpg3kgrtriex.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpg3kgrtriex.e 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
Assertion
Ref Expression
gpg3kgrtriexlem6 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))

Proof of Theorem gpg3kgrtriexlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnz 12486 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
2 gpg3kgrtriex.n . . . . 5 𝑁 = (3 · 𝐾)
3 3nn 12201 . . . . . . 7 3 ∈ ℕ
43a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
5 id 22 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
64, 5nnmulcld 12175 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
72, 6eqeltrid 2835 . . . 4 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
8 zmodfzo 13795 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 mod 𝑁) ∈ (0..^𝑁))
91, 7, 8syl2anc 584 . . 3 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ∈ (0..^𝑁))
10 opeq2 4826 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, 𝑥⟩ = ⟨0, (𝐾 mod 𝑁)⟩)
11 oveq1 7353 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 1) = ((𝐾 mod 𝑁) + 1))
1211oveq1d 7361 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 1) mod 𝑁) = (((𝐾 mod 𝑁) + 1) mod 𝑁))
1312opeq2d 4832 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ = ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩)
1410, 13preq12d 4694 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩})
1514eqeq2d 2742 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩}))
16 opeq2 4826 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, 𝑥⟩ = ⟨1, (𝐾 mod 𝑁)⟩)
1710, 16preq12d 4694 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩})
1817eqeq2d 2742 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩}))
19 oveq1 7353 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 𝐾) = ((𝐾 mod 𝑁) + 𝐾))
2019oveq1d 7361 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 𝐾) mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2120opeq2d 4832 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2216, 21preq12d 4694 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
2322eqeq2d 2742 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
2415, 18, 233orbi123d 1437 . . . 4 (𝑥 = (𝐾 mod 𝑁) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
2524adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ 𝑥 = (𝐾 mod 𝑁)) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
26 gpg3kgrtriex.e . . . . 5 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
272gpg3kgrtriexlem2 48114 . . . . . . 7 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2827opeq2d 4832 . . . . . 6 (𝐾 ∈ ℕ → ⟨1, (-𝐾 mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2928preq2d 4693 . . . . 5 (𝐾 ∈ ℕ → {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
3026, 29eqtrid 2778 . . . 4 (𝐾 ∈ ℕ → 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
31303mix3d 1339 . . 3 (𝐾 ∈ ℕ → (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
329, 25, 31rspcedvd 3579 . 2 (𝐾 ∈ ℕ → ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
33 3z 12502 . . . . . 6 3 ∈ ℤ
3433a1i 11 . . . . 5 (𝐾 ∈ ℕ → 3 ∈ ℤ)
3534, 1zmulcld 12580 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℤ)
36 3t1e3 12282 . . . . . 6 (3 · 1) = 3
37 nnge1 12150 . . . . . . 7 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
38 1red 11110 . . . . . . . 8 (𝐾 ∈ ℕ → 1 ∈ ℝ)
39 nnre 12129 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
40 3re 12202 . . . . . . . . . 10 3 ∈ ℝ
41 3pos 12227 . . . . . . . . . 10 0 < 3
4240, 41pm3.2i 470 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
4342a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → (3 ∈ ℝ ∧ 0 < 3))
44 lemul2 11971 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4538, 39, 43, 44syl3anc 1373 . . . . . . 7 (𝐾 ∈ ℕ → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4637, 45mpbid 232 . . . . . 6 (𝐾 ∈ ℕ → (3 · 1) ≤ (3 · 𝐾))
4736, 46eqbrtrrid 5127 . . . . 5 (𝐾 ∈ ℕ → 3 ≤ (3 · 𝐾))
48 eluz2 12735 . . . . 5 ((3 · 𝐾) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ (3 · 𝐾) ∈ ℤ ∧ 3 ≤ (3 · 𝐾)))
4934, 35, 47, 48syl3anbrc 1344 . . . 4 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ (ℤ‘3))
502, 49eqeltrid 2835 . . 3 (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ‘3))
5140a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 3 ∈ ℝ)
5251, 39remulcld 11139 . . . . . . . 8 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ)
532, 52eqeltrid 2835 . . . . . . 7 (𝐾 ∈ ℕ → 𝑁 ∈ ℝ)
5453rehalfcld 12365 . . . . . 6 (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ)
5554ceilcld 13744 . . . . 5 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ)
5655zred 12574 . . . . . 6 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℝ)
5752rehalfcld 12365 . . . . . . . . . 10 (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ∈ ℝ)
5857ceilcld 13744 . . . . . . . . 9 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℤ)
5958zred 12574 . . . . . . . 8 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℝ)
60 gpg3kgrtriexlem1 48113 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2)))
6139, 59, 60ltled 11258 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3 · 𝐾) / 2)))
622oveq1i 7356 . . . . . . . 8 (𝑁 / 2) = ((3 · 𝐾) / 2)
6362fveq2i 6825 . . . . . . 7 (⌈‘(𝑁 / 2)) = (⌈‘((3 · 𝐾) / 2))
6461, 63breqtrrdi 5133 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2)))
6538, 39, 56, 37, 64letrd 11267 . . . . 5 (𝐾 ∈ ℕ → 1 ≤ (⌈‘(𝑁 / 2)))
66 elnnz1 12495 . . . . 5 ((⌈‘(𝑁 / 2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌈‘(𝑁 / 2))))
6755, 65, 66sylanbrc 583 . . . 4 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ)
6860, 63breqtrrdi 5133 . . . 4 (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2)))
69 elfzo1 13609 . . . 4 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2))))
705, 67, 68, 69syl3anbrc 1344 . . 3 (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
71 eqid 2731 . . . 4 (0..^𝑁) = (0..^𝑁)
72 eqid 2731 . . . 4 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
73 gpg3kgrtriex.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
74 eqid 2731 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
7571, 72, 73, 74gpgedgel 48080 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7650, 70, 75syl2anc 584 . 2 (𝐾 ∈ ℕ → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7732, 76mpbird 257 1 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2111  wrex 3056  {cpr 4578  cop 4582   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  -cneg 11342   / cdiv 11771  cn 12122  2c2 12177  3c3 12178  cz 12465  cuz 12729  ..^cfzo 13551  cceil 13692   mod cmo 13770  Edgcedg 29023   gPetersenGr cgpg 48070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-dec 12586  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-ceil 13694  df-mod 13771  df-hash 14235  df-dvds 16161  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-edgf 28965  df-iedg 28975  df-edg 29024  df-gpg 48071
This theorem is referenced by:  gpg3kgrtriex  48119
  Copyright terms: Public domain W3C validator