Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem6 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem6 48079
Description: Lemma 6 for gpg3kgrtriex 48080: 𝐸 is an edge in the generalized Petersen graph G(N,K) with 𝑁 = 3 · 𝐾. (Contributed by AV, 1-Oct-2025.)
Hypotheses
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
gpg3kgrtriex.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpg3kgrtriex.e 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
Assertion
Ref Expression
gpg3kgrtriexlem6 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))

Proof of Theorem gpg3kgrtriexlem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nnz 12550 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
2 gpg3kgrtriex.n . . . . 5 𝑁 = (3 · 𝐾)
3 3nn 12265 . . . . . . 7 3 ∈ ℕ
43a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
5 id 22 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
64, 5nnmulcld 12239 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
72, 6eqeltrid 2832 . . . 4 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
8 zmodfzo 13856 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐾 mod 𝑁) ∈ (0..^𝑁))
91, 7, 8syl2anc 584 . . 3 (𝐾 ∈ ℕ → (𝐾 mod 𝑁) ∈ (0..^𝑁))
10 opeq2 4838 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, 𝑥⟩ = ⟨0, (𝐾 mod 𝑁)⟩)
11 oveq1 7394 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 1) = ((𝐾 mod 𝑁) + 1))
1211oveq1d 7402 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 1) mod 𝑁) = (((𝐾 mod 𝑁) + 1) mod 𝑁))
1312opeq2d 4844 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨0, ((𝑥 + 1) mod 𝑁)⟩ = ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩)
1410, 13preq12d 4705 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩})
1514eqeq2d 2740 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩}))
16 opeq2 4838 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, 𝑥⟩ = ⟨1, (𝐾 mod 𝑁)⟩)
1710, 16preq12d 4705 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩})
1817eqeq2d 2740 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ↔ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩}))
19 oveq1 7394 . . . . . . . . 9 (𝑥 = (𝐾 mod 𝑁) → (𝑥 + 𝐾) = ((𝐾 mod 𝑁) + 𝐾))
2019oveq1d 7402 . . . . . . . 8 (𝑥 = (𝐾 mod 𝑁) → ((𝑥 + 𝐾) mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2120opeq2d 4844 . . . . . . 7 (𝑥 = (𝐾 mod 𝑁) → ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2216, 21preq12d 4705 . . . . . 6 (𝑥 = (𝐾 mod 𝑁) → {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
2322eqeq2d 2740 . . . . 5 (𝑥 = (𝐾 mod 𝑁) → (𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩} ↔ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
2415, 18, 233orbi123d 1437 . . . 4 (𝑥 = (𝐾 mod 𝑁) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
2524adantl 481 . . 3 ((𝐾 ∈ ℕ ∧ 𝑥 = (𝐾 mod 𝑁)) → ((𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}) ↔ (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})))
26 gpg3kgrtriex.e . . . . 5 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩}
272gpg3kgrtriexlem2 48075 . . . . . . 7 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
2827opeq2d 4844 . . . . . 6 (𝐾 ∈ ℕ → ⟨1, (-𝐾 mod 𝑁)⟩ = ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩)
2928preq2d 4704 . . . . 5 (𝐾 ∈ ℕ → {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (-𝐾 mod 𝑁)⟩} = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
3026, 29eqtrid 2776 . . . 4 (𝐾 ∈ ℕ → 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩})
31303mix3d 1339 . . 3 (𝐾 ∈ ℕ → (𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨0, (((𝐾 mod 𝑁) + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, (𝐾 mod 𝑁)⟩, ⟨1, (𝐾 mod 𝑁)⟩} ∨ 𝐸 = {⟨1, (𝐾 mod 𝑁)⟩, ⟨1, (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)⟩}))
329, 25, 31rspcedvd 3590 . 2 (𝐾 ∈ ℕ → ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩}))
33 3z 12566 . . . . . 6 3 ∈ ℤ
3433a1i 11 . . . . 5 (𝐾 ∈ ℕ → 3 ∈ ℤ)
3534, 1zmulcld 12644 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℤ)
36 3t1e3 12346 . . . . . 6 (3 · 1) = 3
37 nnge1 12214 . . . . . . 7 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
38 1red 11175 . . . . . . . 8 (𝐾 ∈ ℕ → 1 ∈ ℝ)
39 nnre 12193 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
40 3re 12266 . . . . . . . . . 10 3 ∈ ℝ
41 3pos 12291 . . . . . . . . . 10 0 < 3
4240, 41pm3.2i 470 . . . . . . . . 9 (3 ∈ ℝ ∧ 0 < 3)
4342a1i 11 . . . . . . . 8 (𝐾 ∈ ℕ → (3 ∈ ℝ ∧ 0 < 3))
44 lemul2 12035 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4538, 39, 43, 44syl3anc 1373 . . . . . . 7 (𝐾 ∈ ℕ → (1 ≤ 𝐾 ↔ (3 · 1) ≤ (3 · 𝐾)))
4637, 45mpbid 232 . . . . . 6 (𝐾 ∈ ℕ → (3 · 1) ≤ (3 · 𝐾))
4736, 46eqbrtrrid 5143 . . . . 5 (𝐾 ∈ ℕ → 3 ≤ (3 · 𝐾))
48 eluz2 12799 . . . . 5 ((3 · 𝐾) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ (3 · 𝐾) ∈ ℤ ∧ 3 ≤ (3 · 𝐾)))
4934, 35, 47, 48syl3anbrc 1344 . . . 4 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ (ℤ‘3))
502, 49eqeltrid 2832 . . 3 (𝐾 ∈ ℕ → 𝑁 ∈ (ℤ‘3))
5140a1i 11 . . . . . . . . 9 (𝐾 ∈ ℕ → 3 ∈ ℝ)
5251, 39remulcld 11204 . . . . . . . 8 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ)
532, 52eqeltrid 2832 . . . . . . 7 (𝐾 ∈ ℕ → 𝑁 ∈ ℝ)
5453rehalfcld 12429 . . . . . 6 (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ)
5554ceilcld 13805 . . . . 5 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ)
5655zred 12638 . . . . . 6 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℝ)
5752rehalfcld 12429 . . . . . . . . . 10 (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ∈ ℝ)
5857ceilcld 13805 . . . . . . . . 9 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℤ)
5958zred 12638 . . . . . . . 8 (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℝ)
60 gpg3kgrtriexlem1 48074 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2)))
6139, 59, 60ltled 11322 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3 · 𝐾) / 2)))
622oveq1i 7397 . . . . . . . 8 (𝑁 / 2) = ((3 · 𝐾) / 2)
6362fveq2i 6861 . . . . . . 7 (⌈‘(𝑁 / 2)) = (⌈‘((3 · 𝐾) / 2))
6461, 63breqtrrdi 5149 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2)))
6538, 39, 56, 37, 64letrd 11331 . . . . 5 (𝐾 ∈ ℕ → 1 ≤ (⌈‘(𝑁 / 2)))
66 elnnz1 12559 . . . . 5 ((⌈‘(𝑁 / 2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌈‘(𝑁 / 2))))
6755, 65, 66sylanbrc 583 . . . 4 (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ)
6860, 63breqtrrdi 5149 . . . 4 (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2)))
69 elfzo1 13673 . . . 4 (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2))))
705, 67, 68, 69syl3anbrc 1344 . . 3 (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
71 eqid 2729 . . . 4 (0..^𝑁) = (0..^𝑁)
72 eqid 2729 . . . 4 (1..^(⌈‘(𝑁 / 2))) = (1..^(⌈‘(𝑁 / 2)))
73 gpg3kgrtriex.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
74 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
7571, 72, 73, 74gpgedgel 48041 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7650, 70, 75syl2anc 584 . 2 (𝐾 ∈ ℕ → (𝐸 ∈ (Edg‘𝐺) ↔ ∃𝑥 ∈ (0..^𝑁)(𝐸 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑁)⟩} ∨ 𝐸 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝐸 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝐾) mod 𝑁)⟩})))
7732, 76mpbird 257 1 (𝐾 ∈ ℕ → 𝐸 ∈ (Edg‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wrex 3053  {cpr 4591  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  cz 12529  cuz 12793  ..^cfzo 13615  cceil 13753   mod cmo 13831  Edgcedg 28974   gPetersenGr cgpg 48031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-ceil 13755  df-mod 13832  df-hash 14296  df-dvds 16223  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-edgf 28916  df-iedg 28926  df-edg 28975  df-gpg 48032
This theorem is referenced by:  gpg3kgrtriex  48080
  Copyright terms: Public domain W3C validator