Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem2 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem2 47986
Description: Lemma 2 for gpg3kgrtriex 47991. (Contributed by AV, 1-Oct-2025.)
Hypothesis
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
Assertion
Ref Expression
gpg3kgrtriexlem2 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))

Proof of Theorem gpg3kgrtriexlem2
StepHypRef Expression
1 nnre 12256 . . 3 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2 gpg3kgrtriex.n . . . 4 𝑁 = (3 · 𝐾)
3 3rp 13023 . . . . . 6 3 ∈ ℝ+
43a1i 11 . . . . 5 (𝐾 ∈ ℕ → 3 ∈ ℝ+)
5 nnrp 13029 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+)
64, 5rpmulcld 13076 . . . 4 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ+)
72, 6eqeltrid 2837 . . 3 (𝐾 ∈ ℕ → 𝑁 ∈ ℝ+)
8 modaddmod 13933 . . 3 ((𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
91, 1, 7, 8syl3anc 1372 . 2 (𝐾 ∈ ℕ → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
10 nncn 12257 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
11102timesd 12493 . . . 4 (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾))
1211eqcomd 2740 . . 3 (𝐾 ∈ ℕ → (𝐾 + 𝐾) = (2 · 𝐾))
1312oveq1d 7429 . 2 (𝐾 ∈ ℕ → ((𝐾 + 𝐾) mod 𝑁) = ((2 · 𝐾) mod 𝑁))
14 2cnd 12327 . . . . . . 7 (𝐾 ∈ ℕ → 2 ∈ ℂ)
1514, 10adddirp1d 11270 . . . . . 6 (𝐾 ∈ ℕ → ((2 + 1) · 𝐾) = ((2 · 𝐾) + 𝐾))
16 2p1e3 12391 . . . . . . 7 (2 + 1) = 3
1716oveq1i 7424 . . . . . 6 ((2 + 1) · 𝐾) = (3 · 𝐾)
1815, 17eqtr3di 2784 . . . . 5 (𝐾 ∈ ℕ → ((2 · 𝐾) + 𝐾) = (3 · 𝐾))
1918oveq1d 7429 . . . 4 (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = ((3 · 𝐾) mod 𝑁))
202a1i 11 . . . . 5 (𝐾 ∈ ℕ → 𝑁 = (3 · 𝐾))
2120oveq2d 7430 . . . 4 (𝐾 ∈ ℕ → ((3 · 𝐾) mod 𝑁) = ((3 · 𝐾) mod (3 · 𝐾)))
22 modid0 13920 . . . . 5 ((3 · 𝐾) ∈ ℝ+ → ((3 · 𝐾) mod (3 · 𝐾)) = 0)
236, 22syl 17 . . . 4 (𝐾 ∈ ℕ → ((3 · 𝐾) mod (3 · 𝐾)) = 0)
2419, 21, 233eqtrd 2773 . . 3 (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = 0)
25 2nn 12322 . . . . . . 7 2 ∈ ℕ
2625a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 2 ∈ ℕ)
27 id 22 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
2826, 27nnmulcld 12302 . . . . 5 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ)
2928nnzd 12624 . . . 4 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ)
30 nnz 12618 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
31 3nn 12328 . . . . . . 7 3 ∈ ℕ
3231a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
3332, 27nnmulcld 12302 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
342, 33eqeltrid 2837 . . . 4 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
35 summodnegmod 16307 . . . 4 (((2 · 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)))
3629, 30, 34, 35syl3anc 1372 . . 3 (𝐾 ∈ ℕ → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)))
3724, 36mpbid 232 . 2 (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
389, 13, 373eqtrrd 2774 1 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  (class class class)co 7414  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  -cneg 11476  cn 12249  2c2 12304  3c3 12305  cz 12597  +crp 13017   mod cmo 13892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-fl 13815  df-mod 13893  df-dvds 16274
This theorem is referenced by:  gpg3kgrtriexlem6  47990
  Copyright terms: Public domain W3C validator