| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3kgrtriexlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for gpg3kgrtriex 48099. (Contributed by AV, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| gpg3kgrtriex.n | ⊢ 𝑁 = (3 · 𝐾) |
| Ref | Expression |
|---|---|
| gpg3kgrtriexlem2 | ⊢ (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 12124 | . . 3 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ) | |
| 2 | gpg3kgrtriex.n | . . . 4 ⊢ 𝑁 = (3 · 𝐾) | |
| 3 | 3rp 12888 | . . . . . 6 ⊢ 3 ∈ ℝ+ | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℝ+) |
| 5 | nnrp 12894 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+) | |
| 6 | 4, 5 | rpmulcld 12942 | . . . 4 ⊢ (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ+) |
| 7 | 2, 6 | eqeltrid 2833 | . . 3 ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ ℝ+) |
| 8 | modaddmod 13808 | . . 3 ⊢ ((𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁)) | |
| 9 | 1, 1, 7, 8 | syl3anc 1373 | . 2 ⊢ (𝐾 ∈ ℕ → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁)) |
| 10 | nncn 12125 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℂ) | |
| 11 | 10 | 2timesd 12356 | . . . 4 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾)) |
| 12 | 11 | eqcomd 2736 | . . 3 ⊢ (𝐾 ∈ ℕ → (𝐾 + 𝐾) = (2 · 𝐾)) |
| 13 | 12 | oveq1d 7356 | . 2 ⊢ (𝐾 ∈ ℕ → ((𝐾 + 𝐾) mod 𝑁) = ((2 · 𝐾) mod 𝑁)) |
| 14 | 2cnd 12195 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 2 ∈ ℂ) | |
| 15 | 14, 10 | adddirp1d 11130 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → ((2 + 1) · 𝐾) = ((2 · 𝐾) + 𝐾)) |
| 16 | 2p1e3 12254 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 17 | 16 | oveq1i 7351 | . . . . . 6 ⊢ ((2 + 1) · 𝐾) = (3 · 𝐾) |
| 18 | 15, 17 | eqtr3di 2780 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((2 · 𝐾) + 𝐾) = (3 · 𝐾)) |
| 19 | 18 | oveq1d 7356 | . . . 4 ⊢ (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = ((3 · 𝐾) mod 𝑁)) |
| 20 | 2 | a1i 11 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝑁 = (3 · 𝐾)) |
| 21 | 20 | oveq2d 7357 | . . . 4 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) mod 𝑁) = ((3 · 𝐾) mod (3 · 𝐾))) |
| 22 | modid0 13793 | . . . . 5 ⊢ ((3 · 𝐾) ∈ ℝ+ → ((3 · 𝐾) mod (3 · 𝐾)) = 0) | |
| 23 | 6, 22 | syl 17 | . . . 4 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) mod (3 · 𝐾)) = 0) |
| 24 | 19, 21, 23 | 3eqtrd 2769 | . . 3 ⊢ (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = 0) |
| 25 | 2nn 12190 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 26 | 25 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 2 ∈ ℕ) |
| 27 | id 22 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ) | |
| 28 | 26, 27 | nnmulcld 12170 | . . . . 5 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ) |
| 29 | 28 | nnzd 12487 | . . . 4 ⊢ (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ) |
| 30 | nnz 12481 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℤ) | |
| 31 | 3nn 12196 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
| 32 | 31 | a1i 11 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℕ) |
| 33 | 32, 27 | nnmulcld 12170 | . . . . 5 ⊢ (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ) |
| 34 | 2, 33 | eqeltrid 2833 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ ℕ) |
| 35 | summodnegmod 16189 | . . . 4 ⊢ (((2 · 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))) | |
| 36 | 29, 30, 34, 35 | syl3anc 1373 | . . 3 ⊢ (𝐾 ∈ ℕ → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))) |
| 37 | 24, 36 | mpbid 232 | . 2 ⊢ (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)) |
| 38 | 9, 13, 37 | 3eqtrrd 2770 | 1 ⊢ (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 (class class class)co 7341 ℝcr 10997 0cc0 10998 1c1 10999 + caddc 11001 · cmul 11003 -cneg 11337 ℕcn 12117 2c2 12172 3c3 12173 ℤcz 12460 ℝ+crp 12882 mod cmo 13765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-fl 13688 df-mod 13766 df-dvds 16156 |
| This theorem is referenced by: gpg3kgrtriexlem6 48098 |
| Copyright terms: Public domain | W3C validator |