Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem2 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem2 48059
Description: Lemma 2 for gpg3kgrtriex 48064. (Contributed by AV, 1-Oct-2025.)
Hypothesis
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
Assertion
Ref Expression
gpg3kgrtriexlem2 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))

Proof of Theorem gpg3kgrtriexlem2
StepHypRef Expression
1 nnre 12153 . . 3 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2 gpg3kgrtriex.n . . . 4 𝑁 = (3 · 𝐾)
3 3rp 12917 . . . . . 6 3 ∈ ℝ+
43a1i 11 . . . . 5 (𝐾 ∈ ℕ → 3 ∈ ℝ+)
5 nnrp 12923 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+)
64, 5rpmulcld 12971 . . . 4 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ+)
72, 6eqeltrid 2832 . . 3 (𝐾 ∈ ℕ → 𝑁 ∈ ℝ+)
8 modaddmod 13834 . . 3 ((𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
91, 1, 7, 8syl3anc 1373 . 2 (𝐾 ∈ ℕ → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
10 nncn 12154 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
11102timesd 12385 . . . 4 (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾))
1211eqcomd 2735 . . 3 (𝐾 ∈ ℕ → (𝐾 + 𝐾) = (2 · 𝐾))
1312oveq1d 7368 . 2 (𝐾 ∈ ℕ → ((𝐾 + 𝐾) mod 𝑁) = ((2 · 𝐾) mod 𝑁))
14 2cnd 12224 . . . . . . 7 (𝐾 ∈ ℕ → 2 ∈ ℂ)
1514, 10adddirp1d 11160 . . . . . 6 (𝐾 ∈ ℕ → ((2 + 1) · 𝐾) = ((2 · 𝐾) + 𝐾))
16 2p1e3 12283 . . . . . . 7 (2 + 1) = 3
1716oveq1i 7363 . . . . . 6 ((2 + 1) · 𝐾) = (3 · 𝐾)
1815, 17eqtr3di 2779 . . . . 5 (𝐾 ∈ ℕ → ((2 · 𝐾) + 𝐾) = (3 · 𝐾))
1918oveq1d 7368 . . . 4 (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = ((3 · 𝐾) mod 𝑁))
202a1i 11 . . . . 5 (𝐾 ∈ ℕ → 𝑁 = (3 · 𝐾))
2120oveq2d 7369 . . . 4 (𝐾 ∈ ℕ → ((3 · 𝐾) mod 𝑁) = ((3 · 𝐾) mod (3 · 𝐾)))
22 modid0 13819 . . . . 5 ((3 · 𝐾) ∈ ℝ+ → ((3 · 𝐾) mod (3 · 𝐾)) = 0)
236, 22syl 17 . . . 4 (𝐾 ∈ ℕ → ((3 · 𝐾) mod (3 · 𝐾)) = 0)
2419, 21, 233eqtrd 2768 . . 3 (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = 0)
25 2nn 12219 . . . . . . 7 2 ∈ ℕ
2625a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 2 ∈ ℕ)
27 id 22 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
2826, 27nnmulcld 12199 . . . . 5 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ)
2928nnzd 12516 . . . 4 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ)
30 nnz 12510 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
31 3nn 12225 . . . . . . 7 3 ∈ ℕ
3231a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
3332, 27nnmulcld 12199 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
342, 33eqeltrid 2832 . . . 4 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
35 summodnegmod 16215 . . . 4 (((2 · 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)))
3629, 30, 34, 35syl3anc 1373 . . 3 (𝐾 ∈ ℕ → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)))
3724, 36mpbid 232 . 2 (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
389, 13, 373eqtrrd 2769 1 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  -cneg 11366  cn 12146  2c2 12201  3c3 12202  cz 12489  +crp 12911   mod cmo 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fl 13714  df-mod 13792  df-dvds 16182
This theorem is referenced by:  gpg3kgrtriexlem6  48063
  Copyright terms: Public domain W3C validator