Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem2 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem2 47989
Description: Lemma 2 for gpg3kgrtriex 47994. (Contributed by AV, 1-Oct-2025.)
Hypothesis
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
Assertion
Ref Expression
gpg3kgrtriexlem2 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))

Proof of Theorem gpg3kgrtriexlem2
StepHypRef Expression
1 nnre 12277 . . 3 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2 gpg3kgrtriex.n . . . 4 𝑁 = (3 · 𝐾)
3 3rp 13044 . . . . . 6 3 ∈ ℝ+
43a1i 11 . . . . 5 (𝐾 ∈ ℕ → 3 ∈ ℝ+)
5 nnrp 13050 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+)
64, 5rpmulcld 13097 . . . 4 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ+)
72, 6eqeltrid 2844 . . 3 (𝐾 ∈ ℕ → 𝑁 ∈ ℝ+)
8 modaddmod 13953 . . 3 ((𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
91, 1, 7, 8syl3anc 1371 . 2 (𝐾 ∈ ℕ → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
10 nncn 12278 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
11102timesd 12513 . . . 4 (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾))
1211eqcomd 2742 . . 3 (𝐾 ∈ ℕ → (𝐾 + 𝐾) = (2 · 𝐾))
1312oveq1d 7450 . 2 (𝐾 ∈ ℕ → ((𝐾 + 𝐾) mod 𝑁) = ((2 · 𝐾) mod 𝑁))
14 2cnd 12348 . . . . . . 7 (𝐾 ∈ ℕ → 2 ∈ ℂ)
1514, 10adddirp1d 11291 . . . . . 6 (𝐾 ∈ ℕ → ((2 + 1) · 𝐾) = ((2 · 𝐾) + 𝐾))
16 2p1e3 12412 . . . . . . 7 (2 + 1) = 3
1716oveq1i 7445 . . . . . 6 ((2 + 1) · 𝐾) = (3 · 𝐾)
1815, 17eqtr3di 2791 . . . . 5 (𝐾 ∈ ℕ → ((2 · 𝐾) + 𝐾) = (3 · 𝐾))
1918oveq1d 7450 . . . 4 (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = ((3 · 𝐾) mod 𝑁))
202a1i 11 . . . . 5 (𝐾 ∈ ℕ → 𝑁 = (3 · 𝐾))
2120oveq2d 7451 . . . 4 (𝐾 ∈ ℕ → ((3 · 𝐾) mod 𝑁) = ((3 · 𝐾) mod (3 · 𝐾)))
22 modid0 13940 . . . . 5 ((3 · 𝐾) ∈ ℝ+ → ((3 · 𝐾) mod (3 · 𝐾)) = 0)
236, 22syl 17 . . . 4 (𝐾 ∈ ℕ → ((3 · 𝐾) mod (3 · 𝐾)) = 0)
2419, 21, 233eqtrd 2780 . . 3 (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = 0)
25 2nn 12343 . . . . . . 7 2 ∈ ℕ
2625a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 2 ∈ ℕ)
27 id 22 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
2826, 27nnmulcld 12323 . . . . 5 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ)
2928nnzd 12644 . . . 4 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ)
30 nnz 12638 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
31 3nn 12349 . . . . . . 7 3 ∈ ℕ
3231a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
3332, 27nnmulcld 12323 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
342, 33eqeltrid 2844 . . . 4 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
35 summodnegmod 16327 . . . 4 (((2 · 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)))
3629, 30, 34, 35syl3anc 1371 . . 3 (𝐾 ∈ ℕ → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)))
3724, 36mpbid 232 . 2 (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
389, 13, 373eqtrrd 2781 1 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1538  wcel 2107  (class class class)co 7435  cr 11158  0cc0 11159  1c1 11160   + caddc 11162   · cmul 11164  -cneg 11497  cn 12270  2c2 12325  3c3 12326  cz 12617  +crp 13038   mod cmo 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-er 8750  df-en 8991  df-dom 8992  df-sdom 8993  df-sup 9486  df-inf 9487  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-n0 12531  df-z 12618  df-uz 12883  df-rp 13039  df-fl 13835  df-mod 13913  df-dvds 16294
This theorem is referenced by:  gpg3kgrtriexlem6  47993
  Copyright terms: Public domain W3C validator