Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg3kgrtriexlem2 Structured version   Visualization version   GIF version

Theorem gpg3kgrtriexlem2 48075
Description: Lemma 2 for gpg3kgrtriex 48080. (Contributed by AV, 1-Oct-2025.)
Hypothesis
Ref Expression
gpg3kgrtriex.n 𝑁 = (3 · 𝐾)
Assertion
Ref Expression
gpg3kgrtriexlem2 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))

Proof of Theorem gpg3kgrtriexlem2
StepHypRef Expression
1 nnre 12193 . . 3 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2 gpg3kgrtriex.n . . . 4 𝑁 = (3 · 𝐾)
3 3rp 12957 . . . . . 6 3 ∈ ℝ+
43a1i 11 . . . . 5 (𝐾 ∈ ℕ → 3 ∈ ℝ+)
5 nnrp 12963 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ+)
64, 5rpmulcld 13011 . . . 4 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ+)
72, 6eqeltrid 2832 . . 3 (𝐾 ∈ ℕ → 𝑁 ∈ ℝ+)
8 modaddmod 13874 . . 3 ((𝐾 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
91, 1, 7, 8syl3anc 1373 . 2 (𝐾 ∈ ℕ → (((𝐾 mod 𝑁) + 𝐾) mod 𝑁) = ((𝐾 + 𝐾) mod 𝑁))
10 nncn 12194 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
11102timesd 12425 . . . 4 (𝐾 ∈ ℕ → (2 · 𝐾) = (𝐾 + 𝐾))
1211eqcomd 2735 . . 3 (𝐾 ∈ ℕ → (𝐾 + 𝐾) = (2 · 𝐾))
1312oveq1d 7402 . 2 (𝐾 ∈ ℕ → ((𝐾 + 𝐾) mod 𝑁) = ((2 · 𝐾) mod 𝑁))
14 2cnd 12264 . . . . . . 7 (𝐾 ∈ ℕ → 2 ∈ ℂ)
1514, 10adddirp1d 11200 . . . . . 6 (𝐾 ∈ ℕ → ((2 + 1) · 𝐾) = ((2 · 𝐾) + 𝐾))
16 2p1e3 12323 . . . . . . 7 (2 + 1) = 3
1716oveq1i 7397 . . . . . 6 ((2 + 1) · 𝐾) = (3 · 𝐾)
1815, 17eqtr3di 2779 . . . . 5 (𝐾 ∈ ℕ → ((2 · 𝐾) + 𝐾) = (3 · 𝐾))
1918oveq1d 7402 . . . 4 (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = ((3 · 𝐾) mod 𝑁))
202a1i 11 . . . . 5 (𝐾 ∈ ℕ → 𝑁 = (3 · 𝐾))
2120oveq2d 7403 . . . 4 (𝐾 ∈ ℕ → ((3 · 𝐾) mod 𝑁) = ((3 · 𝐾) mod (3 · 𝐾)))
22 modid0 13859 . . . . 5 ((3 · 𝐾) ∈ ℝ+ → ((3 · 𝐾) mod (3 · 𝐾)) = 0)
236, 22syl 17 . . . 4 (𝐾 ∈ ℕ → ((3 · 𝐾) mod (3 · 𝐾)) = 0)
2419, 21, 233eqtrd 2768 . . 3 (𝐾 ∈ ℕ → (((2 · 𝐾) + 𝐾) mod 𝑁) = 0)
25 2nn 12259 . . . . . . 7 2 ∈ ℕ
2625a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 2 ∈ ℕ)
27 id 22 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ)
2826, 27nnmulcld 12239 . . . . 5 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℕ)
2928nnzd 12556 . . . 4 (𝐾 ∈ ℕ → (2 · 𝐾) ∈ ℤ)
30 nnz 12550 . . . 4 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
31 3nn 12265 . . . . . . 7 3 ∈ ℕ
3231a1i 11 . . . . . 6 (𝐾 ∈ ℕ → 3 ∈ ℕ)
3332, 27nnmulcld 12239 . . . . 5 (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℕ)
342, 33eqeltrid 2832 . . . 4 (𝐾 ∈ ℕ → 𝑁 ∈ ℕ)
35 summodnegmod 16256 . . . 4 (((2 · 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)))
3629, 30, 34, 35syl3anc 1373 . . 3 (𝐾 ∈ ℕ → ((((2 · 𝐾) + 𝐾) mod 𝑁) = 0 ↔ ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁)))
3724, 36mpbid 232 . 2 (𝐾 ∈ ℕ → ((2 · 𝐾) mod 𝑁) = (-𝐾 mod 𝑁))
389, 13, 373eqtrrd 2769 1 (𝐾 ∈ ℕ → (-𝐾 mod 𝑁) = (((𝐾 mod 𝑁) + 𝐾) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  -cneg 11406  cn 12186  2c2 12241  3c3 12242  cz 12529  +crp 12951   mod cmo 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-dvds 16223
This theorem is referenced by:  gpg3kgrtriexlem6  48079
  Copyright terms: Public domain W3C validator