| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgvtxdg3 | Structured version Visualization version GIF version | ||
| Description: Every vertex in a generalized Petersen graph has degree 3. (Contributed by AV, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpgvtxdg3.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| gpgvtxdg3.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| gpgvtxdg3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| gpgvtxdg3 | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgvtxdg3.g | . . . 4 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
| 2 | gpgvtxdg3.j | . . . . . . . . 9 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 3 | 2 | eleq2i 2821 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 4 | 3 | biimpi 216 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 5 | 4 | anim2i 617 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))) |
| 6 | 5 | 3adant3 1132 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))) |
| 7 | gpgusgra 48038 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
| 9 | 1, 8 | eqeltrid 2833 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → 𝐺 ∈ USGraph) |
| 10 | simp3 1138 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 11 | gpgvtxdg3.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | 11 | hashnbusgrvd 29462 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑋)) = ((VtxDeg‘𝐺)‘𝑋)) |
| 13 | 12 | eqcomd 2736 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = (♯‘(𝐺 NeighbVtx 𝑋))) |
| 14 | 9, 10, 13 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = (♯‘(𝐺 NeighbVtx 𝑋))) |
| 15 | eqid 2730 | . . 3 ⊢ (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx 𝑋) | |
| 16 | 2, 1, 11, 15 | gpgcubic 48060 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑋)) = 3) |
| 17 | 14, 16 | eqtrd 2765 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = 3) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 1c1 11075 / cdiv 11841 2c2 12242 3c3 12243 ℤ≥cuz 12799 ..^cfzo 13621 ⌈cceil 13759 ♯chash 14301 Vtxcvtx 28929 USGraphcusgr 29082 NeighbVtx cnbgr 29265 VtxDegcvtxdg 29399 gPetersenGr cgpg 48021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-xnn0 12522 df-z 12536 df-dec 12656 df-uz 12800 df-rp 12958 df-xadd 13079 df-ico 13318 df-fz 13475 df-fzo 13622 df-fl 13760 df-ceil 13761 df-mod 13838 df-hash 14302 df-dvds 16229 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-edgf 28922 df-vtx 28931 df-iedg 28932 df-edg 28981 df-uhgr 28991 df-ushgr 28992 df-upgr 29015 df-umgr 29016 df-uspgr 29083 df-usgr 29084 df-nbgr 29266 df-vtxdg 29400 df-gpg 48022 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |