| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgvtxdg3 | Structured version Visualization version GIF version | ||
| Description: Every vertex in a generalized Petersen graph has degree 3. (Contributed by AV, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpgvtxdg3.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| gpgvtxdg3.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| gpgvtxdg3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| gpgvtxdg3 | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gpgvtxdg3.g | . . . 4 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
| 2 | gpgvtxdg3.j | . . . . . . . . 9 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 3 | 2 | eleq2i 2825 | . . . . . . . 8 ⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 4 | 3 | biimpi 216 | . . . . . . 7 ⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 5 | 4 | anim2i 617 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))) |
| 6 | 5 | 3adant3 1132 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))) |
| 7 | gpgusgra 47985 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
| 9 | 1, 8 | eqeltrid 2837 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → 𝐺 ∈ USGraph) |
| 10 | simp3 1138 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 11 | gpgvtxdg3.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | 11 | hashnbusgrvd 29475 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑋)) = ((VtxDeg‘𝐺)‘𝑋)) |
| 13 | 12 | eqcomd 2740 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = (♯‘(𝐺 NeighbVtx 𝑋))) |
| 14 | 9, 10, 13 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = (♯‘(𝐺 NeighbVtx 𝑋))) |
| 15 | eqid 2734 | . . 3 ⊢ (𝐺 NeighbVtx 𝑋) = (𝐺 NeighbVtx 𝑋) | |
| 16 | 2, 1, 11, 15 | gpgcubic 48008 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑋)) = 3) |
| 17 | 14, 16 | eqtrd 2769 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((VtxDeg‘𝐺)‘𝑋) = 3) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 1c1 11138 / cdiv 11902 2c2 12303 3c3 12304 ℤ≥cuz 12860 ..^cfzo 13676 ⌈cceil 13813 ♯chash 14352 Vtxcvtx 28942 USGraphcusgr 29095 NeighbVtx cnbgr 29278 VtxDegcvtxdg 29412 gPetersenGr cgpg 47972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-dec 12717 df-uz 12861 df-rp 13017 df-xadd 13137 df-ico 13375 df-fz 13530 df-fzo 13677 df-fl 13814 df-ceil 13815 df-mod 13892 df-hash 14353 df-dvds 16274 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-edgf 28935 df-vtx 28944 df-iedg 28945 df-edg 28994 df-uhgr 29004 df-ushgr 29005 df-upgr 29028 df-umgr 29029 df-uspgr 29096 df-usgr 29097 df-nbgr 29279 df-vtxdg 29413 df-gpg 47973 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |