| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3kgrtriexlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for gpg3kgrtriex 48033. (Contributed by AV, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| gpg3kgrtriex.n | ⊢ 𝑁 = (3 · 𝐾) |
| Ref | Expression |
|---|---|
| gpg3kgrtriexlem4 | ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ) | |
| 2 | gpg3kgrtriex.n | . . . . . 6 ⊢ 𝑁 = (3 · 𝐾) | |
| 3 | 2 | oveq1i 7404 | . . . . 5 ⊢ (𝑁 / 2) = ((3 · 𝐾) / 2) |
| 4 | 3re 12277 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℝ) |
| 6 | nnre 12204 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ) | |
| 7 | 5, 6 | remulcld 11222 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ) |
| 8 | 7 | rehalfcld 12445 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ∈ ℝ) |
| 9 | 3, 8 | eqeltrid 2833 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ) |
| 10 | 9 | ceilcld 13817 | . . 3 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ) |
| 11 | 1red 11193 | . . . 4 ⊢ (𝐾 ∈ ℕ → 1 ∈ ℝ) | |
| 12 | 2, 7 | eqeltrid 2833 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ ℝ) |
| 13 | 12 | rehalfcld 12445 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ) |
| 14 | 13 | ceilcld 13817 | . . . . 5 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ) |
| 15 | 14 | zred 12654 | . . . 4 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℝ) |
| 16 | nnge1 12225 | . . . 4 ⊢ (𝐾 ∈ ℕ → 1 ≤ 𝐾) | |
| 17 | 8 | ceilcld 13817 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℤ) |
| 18 | 17 | zred 12654 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℝ) |
| 19 | gpg3kgrtriexlem1 48027 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2))) | |
| 20 | 6, 18, 19 | ltled 11340 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3 · 𝐾) / 2))) |
| 21 | 3 | fveq2i 6868 | . . . . 5 ⊢ (⌈‘(𝑁 / 2)) = (⌈‘((3 · 𝐾) / 2)) |
| 22 | 20, 21 | breqtrrdi 5157 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2))) |
| 23 | 11, 6, 15, 16, 22 | letrd 11349 | . . 3 ⊢ (𝐾 ∈ ℕ → 1 ≤ (⌈‘(𝑁 / 2))) |
| 24 | elnnz1 12575 | . . 3 ⊢ ((⌈‘(𝑁 / 2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌈‘(𝑁 / 2)))) | |
| 25 | 10, 23, 24 | sylanbrc 583 | . 2 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ) |
| 26 | 19, 21 | breqtrrdi 5157 | . 2 ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2))) |
| 27 | elfzo1 13686 | . 2 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
| 28 | 1, 25, 26, 27 | syl3anbrc 1344 | 1 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 ℝcr 11085 1c1 11087 · cmul 11091 < clt 11226 ≤ cle 11227 / cdiv 11851 ℕcn 12197 2c2 12252 3c3 12253 ℤcz 12545 ..^cfzo 13628 ⌈cceil 13765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-fz 13482 df-fzo 13629 df-fl 13766 df-ceil 13767 |
| This theorem is referenced by: gpg3kgrtriex 48033 |
| Copyright terms: Public domain | W3C validator |