| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3kgrtriexlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for gpg3kgrtriex 47991. (Contributed by AV, 1-Oct-2025.) |
| Ref | Expression |
|---|---|
| gpg3kgrtriex.n | ⊢ 𝑁 = (3 · 𝐾) |
| Ref | Expression |
|---|---|
| gpg3kgrtriexlem4 | ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ) | |
| 2 | gpg3kgrtriex.n | . . . . . 6 ⊢ 𝑁 = (3 · 𝐾) | |
| 3 | 2 | oveq1i 7424 | . . . . 5 ⊢ (𝑁 / 2) = ((3 · 𝐾) / 2) |
| 4 | 3re 12329 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℝ) |
| 6 | nnre 12256 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ) | |
| 7 | 5, 6 | remulcld 11274 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ) |
| 8 | 7 | rehalfcld 12497 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ∈ ℝ) |
| 9 | 3, 8 | eqeltrid 2837 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ) |
| 10 | 9 | ceilcld 13866 | . . 3 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ) |
| 11 | 1red 11245 | . . . 4 ⊢ (𝐾 ∈ ℕ → 1 ∈ ℝ) | |
| 12 | 2, 7 | eqeltrid 2837 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ ℝ) |
| 13 | 12 | rehalfcld 12497 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ) |
| 14 | 13 | ceilcld 13866 | . . . . 5 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ) |
| 15 | 14 | zred 12706 | . . . 4 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℝ) |
| 16 | nnge1 12277 | . . . 4 ⊢ (𝐾 ∈ ℕ → 1 ≤ 𝐾) | |
| 17 | 8 | ceilcld 13866 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℤ) |
| 18 | 17 | zred 12706 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℝ) |
| 19 | gpg3kgrtriexlem1 47985 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2))) | |
| 20 | 6, 18, 19 | ltled 11392 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3 · 𝐾) / 2))) |
| 21 | 3 | fveq2i 6890 | . . . . 5 ⊢ (⌈‘(𝑁 / 2)) = (⌈‘((3 · 𝐾) / 2)) |
| 22 | 20, 21 | breqtrrdi 5167 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2))) |
| 23 | 11, 6, 15, 16, 22 | letrd 11401 | . . 3 ⊢ (𝐾 ∈ ℕ → 1 ≤ (⌈‘(𝑁 / 2))) |
| 24 | elnnz1 12627 | . . 3 ⊢ ((⌈‘(𝑁 / 2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌈‘(𝑁 / 2)))) | |
| 25 | 10, 23, 24 | sylanbrc 583 | . 2 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ) |
| 26 | 19, 21 | breqtrrdi 5167 | . 2 ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2))) |
| 27 | elfzo1 13735 | . 2 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
| 28 | 1, 25, 26, 27 | syl3anbrc 1343 | 1 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 ℝcr 11137 1c1 11139 · cmul 11143 < clt 11278 ≤ cle 11279 / cdiv 11903 ℕcn 12249 2c2 12304 3c3 12305 ℤcz 12597 ..^cfzo 13677 ⌈cceil 13814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-n0 12511 df-z 12598 df-uz 12862 df-rp 13018 df-fz 13531 df-fzo 13678 df-fl 13815 df-ceil 13816 |
| This theorem is referenced by: gpg3kgrtriex 47991 |
| Copyright terms: Public domain | W3C validator |