![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg3kgrtriexlem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for gpg3kgrtriex 47994. (Contributed by AV, 1-Oct-2025.) |
Ref | Expression |
---|---|
gpg3kgrtriex.n | ⊢ 𝑁 = (3 · 𝐾) |
Ref | Expression |
---|---|
gpg3kgrtriexlem4 | ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ) | |
2 | gpg3kgrtriex.n | . . . . . 6 ⊢ 𝑁 = (3 · 𝐾) | |
3 | 2 | oveq1i 7445 | . . . . 5 ⊢ (𝑁 / 2) = ((3 · 𝐾) / 2) |
4 | 3re 12350 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 3 ∈ ℝ) |
6 | nnre 12277 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ) | |
7 | 5, 6 | remulcld 11295 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (3 · 𝐾) ∈ ℝ) |
8 | 7 | rehalfcld 12517 | . . . . 5 ⊢ (𝐾 ∈ ℕ → ((3 · 𝐾) / 2) ∈ ℝ) |
9 | 3, 8 | eqeltrid 2844 | . . . 4 ⊢ (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ) |
10 | 9 | ceilcld 13886 | . . 3 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ) |
11 | 1red 11266 | . . . 4 ⊢ (𝐾 ∈ ℕ → 1 ∈ ℝ) | |
12 | 2, 7 | eqeltrid 2844 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝑁 ∈ ℝ) |
13 | 12 | rehalfcld 12517 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (𝑁 / 2) ∈ ℝ) |
14 | 13 | ceilcld 13886 | . . . . 5 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℤ) |
15 | 14 | zred 12726 | . . . 4 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℝ) |
16 | nnge1 12298 | . . . 4 ⊢ (𝐾 ∈ ℕ → 1 ≤ 𝐾) | |
17 | 8 | ceilcld 13886 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℤ) |
18 | 17 | zred 12726 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → (⌈‘((3 · 𝐾) / 2)) ∈ ℝ) |
19 | gpg3kgrtriexlem1 47988 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘((3 · 𝐾) / 2))) | |
20 | 6, 18, 19 | ltled 11413 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘((3 · 𝐾) / 2))) |
21 | 3 | fveq2i 6914 | . . . . 5 ⊢ (⌈‘(𝑁 / 2)) = (⌈‘((3 · 𝐾) / 2)) |
22 | 20, 21 | breqtrrdi 5191 | . . . 4 ⊢ (𝐾 ∈ ℕ → 𝐾 ≤ (⌈‘(𝑁 / 2))) |
23 | 11, 6, 15, 16, 22 | letrd 11422 | . . 3 ⊢ (𝐾 ∈ ℕ → 1 ≤ (⌈‘(𝑁 / 2))) |
24 | elnnz1 12647 | . . 3 ⊢ ((⌈‘(𝑁 / 2)) ∈ ℕ ↔ ((⌈‘(𝑁 / 2)) ∈ ℤ ∧ 1 ≤ (⌈‘(𝑁 / 2)))) | |
25 | 10, 23, 24 | sylanbrc 583 | . 2 ⊢ (𝐾 ∈ ℕ → (⌈‘(𝑁 / 2)) ∈ ℕ) |
26 | 19, 21 | breqtrrdi 5191 | . 2 ⊢ (𝐾 ∈ ℕ → 𝐾 < (⌈‘(𝑁 / 2))) |
27 | elfzo1 13755 | . 2 ⊢ (𝐾 ∈ (1..^(⌈‘(𝑁 / 2))) ↔ (𝐾 ∈ ℕ ∧ (⌈‘(𝑁 / 2)) ∈ ℕ ∧ 𝐾 < (⌈‘(𝑁 / 2)))) | |
28 | 1, 25, 26, 27 | syl3anbrc 1343 | 1 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 class class class wbr 5149 ‘cfv 6566 (class class class)co 7435 ℝcr 11158 1c1 11160 · cmul 11164 < clt 11299 ≤ cle 11300 / cdiv 11924 ℕcn 12270 2c2 12325 3c3 12326 ℤcz 12617 ..^cfzo 13697 ⌈cceil 13834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-sup 9486 df-inf 9487 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-n0 12531 df-z 12618 df-uz 12883 df-rp 13039 df-fz 13551 df-fzo 13698 df-fl 13835 df-ceil 13836 |
This theorem is referenced by: gpg3kgrtriex 47994 |
Copyright terms: Public domain | W3C validator |