Proof of Theorem fvf1tp
| Step | Hyp | Ref
| Expression |
| 1 | | f1f 6804 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 𝐹:(0..^3)⟶{𝑋, 𝑌, 𝑍}) |
| 2 | | 3nn 12345 |
. . . . 5
⊢ 3 ∈
ℕ |
| 3 | | lbfzo0 13739 |
. . . . 5
⊢ (0 ∈
(0..^3) ↔ 3 ∈ ℕ) |
| 4 | 2, 3 | mpbir 231 |
. . . 4
⊢ 0 ∈
(0..^3) |
| 5 | 4 | a1i 11 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 0 ∈ (0..^3)) |
| 6 | 1, 5 | ffvelcdmd 7105 |
. 2
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (𝐹‘0) ∈ {𝑋, 𝑌, 𝑍}) |
| 7 | | 1nn0 12542 |
. . . . 5
⊢ 1 ∈
ℕ0 |
| 8 | | 1lt3 12439 |
. . . . 5
⊢ 1 <
3 |
| 9 | | elfzo0 13740 |
. . . . 5
⊢ (1 ∈
(0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1
< 3)) |
| 10 | 7, 2, 8, 9 | mpbir3an 1342 |
. . . 4
⊢ 1 ∈
(0..^3) |
| 11 | 10 | a1i 11 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 1 ∈ (0..^3)) |
| 12 | 1, 11 | ffvelcdmd 7105 |
. 2
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (𝐹‘1) ∈ {𝑋, 𝑌, 𝑍}) |
| 13 | | 2nn0 12543 |
. . . . 5
⊢ 2 ∈
ℕ0 |
| 14 | | 2lt3 12438 |
. . . . 5
⊢ 2 <
3 |
| 15 | | elfzo0 13740 |
. . . . 5
⊢ (2 ∈
(0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2
< 3)) |
| 16 | 13, 2, 14, 15 | mpbir3an 1342 |
. . . 4
⊢ 2 ∈
(0..^3) |
| 17 | 16 | a1i 11 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 2 ∈ (0..^3)) |
| 18 | 1, 17 | ffvelcdmd 7105 |
. 2
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (𝐹‘2) ∈ {𝑋, 𝑌, 𝑍}) |
| 19 | | eltpi 4688 |
. . . 4
⊢ ((𝐹‘0) ∈ {𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍)) |
| 20 | | eltpi 4688 |
. . . 4
⊢ ((𝐹‘1) ∈ {𝑋, 𝑌, 𝑍} → ((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍)) |
| 21 | | eltpi 4688 |
. . . 4
⊢ ((𝐹‘2) ∈ {𝑋, 𝑌, 𝑍} → ((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍)) |
| 22 | 19, 20, 21 | 3anim123i 1152 |
. . 3
⊢ (((𝐹‘0) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘2) ∈ {𝑋, 𝑌, 𝑍}) → (((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍) ∧ ((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) ∧ ((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍))) |
| 23 | | eqeq2 2749 |
. . . . . . . . . 10
⊢ (𝑋 = (𝐹‘0) → ((𝐹‘1) = 𝑋 ↔ (𝐹‘1) = (𝐹‘0))) |
| 24 | 23 | eqcoms 2745 |
. . . . . . . . 9
⊢ ((𝐹‘0) = 𝑋 → ((𝐹‘1) = 𝑋 ↔ (𝐹‘1) = (𝐹‘0))) |
| 25 | 24 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑋 ↔ (𝐹‘1) = (𝐹‘0))) |
| 26 | | f1veqaeq 7277 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (1 ∈ (0..^3) ∧ 0 ∈
(0..^3))) → ((𝐹‘1) = (𝐹‘0) → 1 = 0)) |
| 27 | 10, 4, 26 | mpanr12 705 |
. . . . . . . . . 10
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘1) = (𝐹‘0) → 1 = 0)) |
| 28 | | ax-1ne0 11224 |
. . . . . . . . . 10
⊢ 1 ≠
0 |
| 29 | | eqneqall 2951 |
. . . . . . . . . 10
⊢ (1 = 0
→ (1 ≠ 0 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 30 | 27, 28, 29 | syl6mpi 67 |
. . . . . . . . 9
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 31 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 32 | 25, 31 | sylbid 240 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑋 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 33 | | eqeq2 2749 |
. . . . . . . . . . . . 13
⊢ (𝑋 = (𝐹‘0) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘0))) |
| 34 | 33 | eqcoms 2745 |
. . . . . . . . . . . 12
⊢ ((𝐹‘0) = 𝑋 → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘0))) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘0))) |
| 36 | 16, 4 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(0..^3) ∧ 0 ∈ (0..^3)) |
| 37 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘0) = 𝑋 → (2 ∈ (0..^3) ∧ 0 ∈
(0..^3))) |
| 38 | | f1veqaeq 7277 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (2 ∈ (0..^3) ∧ 0 ∈
(0..^3))) → ((𝐹‘2) = (𝐹‘0) → 2 = 0)) |
| 39 | 37, 38 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘0) → 2 = 0)) |
| 40 | | 2ne0 12370 |
. . . . . . . . . . . 12
⊢ 2 ≠
0 |
| 41 | | eqneqall 2951 |
. . . . . . . . . . . 12
⊢ (2 = 0
→ (2 ≠ 0 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 42 | 39, 40, 41 | syl6mpi 67 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 43 | 35, 42 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 44 | 43 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 45 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (𝑌 = (𝐹‘1) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1))) |
| 46 | 45 | eqcoms 2745 |
. . . . . . . . . . 11
⊢ ((𝐹‘1) = 𝑌 → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1))) |
| 47 | 46 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1))) |
| 48 | 16, 10 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(0..^3) ∧ 1 ∈ (0..^3)) |
| 49 | 48 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘0) = 𝑋 → (2 ∈ (0..^3) ∧ 1 ∈
(0..^3))) |
| 50 | | f1veqaeq 7277 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (2 ∈ (0..^3) ∧ 1 ∈
(0..^3))) → ((𝐹‘2) = (𝐹‘1) → 2 = 1)) |
| 51 | 49, 50 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → 2 = 1)) |
| 52 | | 1ne2 12474 |
. . . . . . . . . . . . 13
⊢ 1 ≠
2 |
| 53 | 52 | necomi 2995 |
. . . . . . . . . . . 12
⊢ 2 ≠
1 |
| 54 | | eqneqall 2951 |
. . . . . . . . . . . 12
⊢ (2 = 1
→ (2 ≠ 1 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 55 | 51, 53, 54 | syl6mpi 67 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 56 | 55 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 57 | 47, 56 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 58 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (𝐹‘0) = 𝑋) |
| 59 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (𝐹‘1) = 𝑌) |
| 60 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (𝐹‘2) = 𝑍) |
| 61 | 58, 59, 60 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍)) |
| 62 | 61 | orcd 874 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌))) |
| 63 | 62 | 3mix1d 1337 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
| 64 | 63 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 65 | 44, 57, 64 | 3jaod 1431 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 66 | 65 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑌 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 67 | 43 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 68 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (𝐹‘0) = 𝑋) |
| 69 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (𝐹‘1) = 𝑍) |
| 70 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (𝐹‘2) = 𝑌) |
| 71 | 68, 69, 70 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) |
| 72 | 71 | olcd 875 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌))) |
| 73 | 72 | 3mix1d 1337 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
| 74 | 73 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 75 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (𝑍 = (𝐹‘1) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1))) |
| 76 | 75 | eqcoms 2745 |
. . . . . . . . . . 11
⊢ ((𝐹‘1) = 𝑍 → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1))) |
| 77 | 76 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1))) |
| 78 | 16, 10, 50 | mpanr12 705 |
. . . . . . . . . . . . 13
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘1) → 2 = 1)) |
| 79 | 78, 53, 54 | syl6mpi 67 |
. . . . . . . . . . . 12
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 81 | 80 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 82 | 77, 81 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 83 | 67, 74, 82 | 3jaod 1431 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 84 | 83 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑍 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 85 | 32, 66, 84 | 3jaod 1431 |
. . . . . 6
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 86 | 85 | ex 412 |
. . . . 5
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑋 → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))) |
| 87 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (𝑋 = (𝐹‘1) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1))) |
| 88 | 87 | eqcoms 2745 |
. . . . . . . . . . 11
⊢ ((𝐹‘1) = 𝑋 → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1))) |
| 89 | 88 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1))) |
| 90 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 91 | 90 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 92 | 89, 91 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 93 | | eqeq2 2749 |
. . . . . . . . . . . . 13
⊢ (𝑌 = (𝐹‘0) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘0))) |
| 94 | 93 | eqcoms 2745 |
. . . . . . . . . . . 12
⊢ ((𝐹‘0) = 𝑌 → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘0))) |
| 95 | 94 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘0))) |
| 96 | 16, 4, 38 | mpanr12 705 |
. . . . . . . . . . . . 13
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘0) → 2 = 0)) |
| 97 | 96, 40, 41 | syl6mpi 67 |
. . . . . . . . . . . 12
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 98 | 97 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 99 | 95, 98 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 100 | 99 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 101 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (𝐹‘0) = 𝑌) |
| 102 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (𝐹‘1) = 𝑋) |
| 103 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (𝐹‘2) = 𝑍) |
| 104 | 101, 102,
103 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍)) |
| 105 | 104 | orcd 874 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋))) |
| 106 | 105 | 3mix2d 1338 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
| 107 | 106 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 108 | 92, 100, 107 | 3jaod 1431 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 109 | 108 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑋 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 110 | | eqeq2 2749 |
. . . . . . . . . 10
⊢ (𝑌 = (𝐹‘0) → ((𝐹‘1) = 𝑌 ↔ (𝐹‘1) = (𝐹‘0))) |
| 111 | 110 | eqcoms 2745 |
. . . . . . . . 9
⊢ ((𝐹‘0) = 𝑌 → ((𝐹‘1) = 𝑌 ↔ (𝐹‘1) = (𝐹‘0))) |
| 112 | 111 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑌 ↔ (𝐹‘1) = (𝐹‘0))) |
| 113 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 114 | 112, 113 | sylbid 240 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑌 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 115 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (𝐹‘0) = 𝑌) |
| 116 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (𝐹‘1) = 𝑍) |
| 117 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (𝐹‘2) = 𝑋) |
| 118 | 115, 116,
117 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) |
| 119 | 118 | olcd 875 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋))) |
| 120 | 119 | 3mix2d 1338 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
| 121 | 120 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 122 | 99 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 123 | 76 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1))) |
| 124 | 90 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 125 | 123, 124 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 126 | 121, 122,
125 | 3jaod 1431 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 127 | 126 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑍 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 128 | 109, 114,
127 | 3jaod 1431 |
. . . . . 6
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 129 | 128 | ex 412 |
. . . . 5
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑌 → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))) |
| 130 | 88 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1))) |
| 131 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 132 | 130, 131 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 133 | 132 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 134 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (𝐹‘0) = 𝑍) |
| 135 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (𝐹‘1) = 𝑋) |
| 136 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (𝐹‘2) = 𝑌) |
| 137 | 134, 135,
136 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌)) |
| 138 | 137 | orcd 874 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))) |
| 139 | 138 | 3mix3d 1339 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
| 140 | 139 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 141 | | eqeq2 2749 |
. . . . . . . . . . . . 13
⊢ (𝑍 = (𝐹‘0) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘0))) |
| 142 | 141 | eqcoms 2745 |
. . . . . . . . . . . 12
⊢ ((𝐹‘0) = 𝑍 → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘0))) |
| 143 | 142 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘0))) |
| 144 | 97 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 145 | 143, 144 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 146 | 145 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 147 | 133, 140,
146 | 3jaod 1431 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 148 | 147 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑋 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 149 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (𝐹‘0) = 𝑍) |
| 150 | | simplr 769 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (𝐹‘1) = 𝑌) |
| 151 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (𝐹‘2) = 𝑋) |
| 152 | 149, 150,
151 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)) |
| 153 | 152 | olcd 875 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))) |
| 154 | 153 | 3mix3d 1339 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
| 155 | 154 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 156 | 46 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1))) |
| 157 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 158 | 157 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 159 | 156, 158 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 160 | 145 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 161 | 155, 159,
160 | 3jaod 1431 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 162 | 161 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑌 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 163 | | eqeq2 2749 |
. . . . . . . . . 10
⊢ (𝑍 = (𝐹‘0) → ((𝐹‘1) = 𝑍 ↔ (𝐹‘1) = (𝐹‘0))) |
| 164 | 163 | eqcoms 2745 |
. . . . . . . . 9
⊢ ((𝐹‘0) = 𝑍 → ((𝐹‘1) = 𝑍 ↔ (𝐹‘1) = (𝐹‘0))) |
| 165 | 164 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑍 ↔ (𝐹‘1) = (𝐹‘0))) |
| 166 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 167 | 165, 166 | sylbid 240 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑍 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 168 | 148, 162,
167 | 3jaod 1431 |
. . . . . 6
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
| 169 | 168 | ex 412 |
. . . . 5
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑍 → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))) |
| 170 | 86, 129, 169 | 3jaod 1431 |
. . . 4
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))) |
| 171 | 170 | 3impd 1349 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍) ∧ ((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) ∧ ((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍)) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 172 | 22, 171 | syl5 34 |
. 2
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (((𝐹‘0) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘2) ∈ {𝑋, 𝑌, 𝑍}) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
| 173 | 6, 12, 18, 172 | mp3and 1466 |
1
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |