Proof of Theorem fvf1tp
Step | Hyp | Ref
| Expression |
1 | | f1f 6817 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 𝐹:(0..^3)⟶{𝑋, 𝑌, 𝑍}) |
2 | | 3nn 12372 |
. . . . 5
⊢ 3 ∈
ℕ |
3 | | lbfzo0 13756 |
. . . . 5
⊢ (0 ∈
(0..^3) ↔ 3 ∈ ℕ) |
4 | 2, 3 | mpbir 231 |
. . . 4
⊢ 0 ∈
(0..^3) |
5 | 4 | a1i 11 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 0 ∈ (0..^3)) |
6 | 1, 5 | ffvelcdmd 7119 |
. 2
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (𝐹‘0) ∈ {𝑋, 𝑌, 𝑍}) |
7 | | 1nn0 12569 |
. . . . 5
⊢ 1 ∈
ℕ0 |
8 | | 1lt3 12466 |
. . . . 5
⊢ 1 <
3 |
9 | | elfzo0 13757 |
. . . . 5
⊢ (1 ∈
(0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1
< 3)) |
10 | 7, 2, 8, 9 | mpbir3an 1341 |
. . . 4
⊢ 1 ∈
(0..^3) |
11 | 10 | a1i 11 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 1 ∈ (0..^3)) |
12 | 1, 11 | ffvelcdmd 7119 |
. 2
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (𝐹‘1) ∈ {𝑋, 𝑌, 𝑍}) |
13 | | 2nn0 12570 |
. . . . 5
⊢ 2 ∈
ℕ0 |
14 | | 2lt3 12465 |
. . . . 5
⊢ 2 <
3 |
15 | | elfzo0 13757 |
. . . . 5
⊢ (2 ∈
(0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2
< 3)) |
16 | 13, 2, 14, 15 | mpbir3an 1341 |
. . . 4
⊢ 2 ∈
(0..^3) |
17 | 16 | a1i 11 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 2 ∈ (0..^3)) |
18 | 1, 17 | ffvelcdmd 7119 |
. 2
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (𝐹‘2) ∈ {𝑋, 𝑌, 𝑍}) |
19 | | eltpi 4711 |
. . . 4
⊢ ((𝐹‘0) ∈ {𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍)) |
20 | | eltpi 4711 |
. . . 4
⊢ ((𝐹‘1) ∈ {𝑋, 𝑌, 𝑍} → ((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍)) |
21 | | eltpi 4711 |
. . . 4
⊢ ((𝐹‘2) ∈ {𝑋, 𝑌, 𝑍} → ((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍)) |
22 | 19, 20, 21 | 3anim123i 1151 |
. . 3
⊢ (((𝐹‘0) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘2) ∈ {𝑋, 𝑌, 𝑍}) → (((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍) ∧ ((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) ∧ ((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍))) |
23 | | eqeq2 2752 |
. . . . . . . . . 10
⊢ (𝑋 = (𝐹‘0) → ((𝐹‘1) = 𝑋 ↔ (𝐹‘1) = (𝐹‘0))) |
24 | 23 | eqcoms 2748 |
. . . . . . . . 9
⊢ ((𝐹‘0) = 𝑋 → ((𝐹‘1) = 𝑋 ↔ (𝐹‘1) = (𝐹‘0))) |
25 | 24 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑋 ↔ (𝐹‘1) = (𝐹‘0))) |
26 | | f1veqaeq 7294 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (1 ∈ (0..^3) ∧ 0 ∈
(0..^3))) → ((𝐹‘1) = (𝐹‘0) → 1 = 0)) |
27 | 10, 4, 26 | mpanr12 704 |
. . . . . . . . . 10
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘1) = (𝐹‘0) → 1 = 0)) |
28 | | ax-1ne0 11253 |
. . . . . . . . . 10
⊢ 1 ≠
0 |
29 | | eqneqall 2957 |
. . . . . . . . . 10
⊢ (1 = 0
→ (1 ≠ 0 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
30 | 27, 28, 29 | syl6mpi 67 |
. . . . . . . . 9
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
31 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
32 | 25, 31 | sylbid 240 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑋 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
33 | | eqeq2 2752 |
. . . . . . . . . . . . 13
⊢ (𝑋 = (𝐹‘0) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘0))) |
34 | 33 | eqcoms 2748 |
. . . . . . . . . . . 12
⊢ ((𝐹‘0) = 𝑋 → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘0))) |
35 | 34 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘0))) |
36 | 16, 4 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(0..^3) ∧ 0 ∈ (0..^3)) |
37 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘0) = 𝑋 → (2 ∈ (0..^3) ∧ 0 ∈
(0..^3))) |
38 | | f1veqaeq 7294 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (2 ∈ (0..^3) ∧ 0 ∈
(0..^3))) → ((𝐹‘2) = (𝐹‘0) → 2 = 0)) |
39 | 37, 38 | sylan2 592 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘0) → 2 = 0)) |
40 | | 2ne0 12397 |
. . . . . . . . . . . 12
⊢ 2 ≠
0 |
41 | | eqneqall 2957 |
. . . . . . . . . . . 12
⊢ (2 = 0
→ (2 ≠ 0 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
42 | 39, 40, 41 | syl6mpi 67 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
43 | 35, 42 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
44 | 43 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
45 | | eqeq2 2752 |
. . . . . . . . . . . 12
⊢ (𝑌 = (𝐹‘1) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1))) |
46 | 45 | eqcoms 2748 |
. . . . . . . . . . 11
⊢ ((𝐹‘1) = 𝑌 → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1))) |
47 | 46 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1))) |
48 | 16, 10 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(0..^3) ∧ 1 ∈ (0..^3)) |
49 | 48 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘0) = 𝑋 → (2 ∈ (0..^3) ∧ 1 ∈
(0..^3))) |
50 | | f1veqaeq 7294 |
. . . . . . . . . . . . 13
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (2 ∈ (0..^3) ∧ 1 ∈
(0..^3))) → ((𝐹‘2) = (𝐹‘1) → 2 = 1)) |
51 | 49, 50 | sylan2 592 |
. . . . . . . . . . . 12
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → 2 = 1)) |
52 | | 1ne2 12501 |
. . . . . . . . . . . . 13
⊢ 1 ≠
2 |
53 | 52 | necomi 3001 |
. . . . . . . . . . . 12
⊢ 2 ≠
1 |
54 | | eqneqall 2957 |
. . . . . . . . . . . 12
⊢ (2 = 1
→ (2 ≠ 1 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
55 | 51, 53, 54 | syl6mpi 67 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
56 | 55 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
57 | 47, 56 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
58 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (𝐹‘0) = 𝑋) |
59 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (𝐹‘1) = 𝑌) |
60 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (𝐹‘2) = 𝑍) |
61 | 58, 59, 60 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍)) |
62 | 61 | orcd 872 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌))) |
63 | 62 | 3mix1d 1336 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
64 | 63 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
65 | 44, 57, 64 | 3jaod 1429 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
66 | 65 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑌 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
67 | 43 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
68 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (𝐹‘0) = 𝑋) |
69 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (𝐹‘1) = 𝑍) |
70 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (𝐹‘2) = 𝑌) |
71 | 68, 69, 70 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) |
72 | 71 | olcd 873 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌))) |
73 | 72 | 3mix1d 1336 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
74 | 73 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
75 | | eqeq2 2752 |
. . . . . . . . . . . 12
⊢ (𝑍 = (𝐹‘1) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1))) |
76 | 75 | eqcoms 2748 |
. . . . . . . . . . 11
⊢ ((𝐹‘1) = 𝑍 → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1))) |
77 | 76 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1))) |
78 | 16, 10, 50 | mpanr12 704 |
. . . . . . . . . . . . 13
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘1) → 2 = 1)) |
79 | 78, 53, 54 | syl6mpi 67 |
. . . . . . . . . . . 12
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
80 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
81 | 80 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
82 | 77, 81 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
83 | 67, 74, 82 | 3jaod 1429 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
84 | 83 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑍 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
85 | 32, 66, 84 | 3jaod 1429 |
. . . . . 6
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
86 | 85 | ex 412 |
. . . . 5
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑋 → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))) |
87 | | eqeq2 2752 |
. . . . . . . . . . . 12
⊢ (𝑋 = (𝐹‘1) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1))) |
88 | 87 | eqcoms 2748 |
. . . . . . . . . . 11
⊢ ((𝐹‘1) = 𝑋 → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1))) |
89 | 88 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1))) |
90 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
91 | 90 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
92 | 89, 91 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
93 | | eqeq2 2752 |
. . . . . . . . . . . . 13
⊢ (𝑌 = (𝐹‘0) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘0))) |
94 | 93 | eqcoms 2748 |
. . . . . . . . . . . 12
⊢ ((𝐹‘0) = 𝑌 → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘0))) |
95 | 94 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘0))) |
96 | 16, 4, 38 | mpanr12 704 |
. . . . . . . . . . . . 13
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘0) → 2 = 0)) |
97 | 96, 40, 41 | syl6mpi 67 |
. . . . . . . . . . . 12
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
98 | 97 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
99 | 95, 98 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
100 | 99 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
101 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (𝐹‘0) = 𝑌) |
102 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (𝐹‘1) = 𝑋) |
103 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (𝐹‘2) = 𝑍) |
104 | 101, 102,
103 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍)) |
105 | 104 | orcd 872 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋))) |
106 | 105 | 3mix2d 1337 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
107 | 106 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
108 | 92, 100, 107 | 3jaod 1429 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
109 | 108 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑋 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
110 | | eqeq2 2752 |
. . . . . . . . . 10
⊢ (𝑌 = (𝐹‘0) → ((𝐹‘1) = 𝑌 ↔ (𝐹‘1) = (𝐹‘0))) |
111 | 110 | eqcoms 2748 |
. . . . . . . . 9
⊢ ((𝐹‘0) = 𝑌 → ((𝐹‘1) = 𝑌 ↔ (𝐹‘1) = (𝐹‘0))) |
112 | 111 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑌 ↔ (𝐹‘1) = (𝐹‘0))) |
113 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
114 | 112, 113 | sylbid 240 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑌 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
115 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (𝐹‘0) = 𝑌) |
116 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (𝐹‘1) = 𝑍) |
117 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (𝐹‘2) = 𝑋) |
118 | 115, 116,
117 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) |
119 | 118 | olcd 873 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋))) |
120 | 119 | 3mix2d 1337 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
121 | 120 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
122 | 99 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
123 | 76 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1))) |
124 | 90 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
125 | 123, 124 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
126 | 121, 122,
125 | 3jaod 1429 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
127 | 126 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑍 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
128 | 109, 114,
127 | 3jaod 1429 |
. . . . . 6
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
129 | 128 | ex 412 |
. . . . 5
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑌 → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))) |
130 | 88 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1))) |
131 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
132 | 130, 131 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
133 | 132 | adantlr 714 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
134 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (𝐹‘0) = 𝑍) |
135 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (𝐹‘1) = 𝑋) |
136 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (𝐹‘2) = 𝑌) |
137 | 134, 135,
136 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌)) |
138 | 137 | orcd 872 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))) |
139 | 138 | 3mix3d 1338 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
140 | 139 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
141 | | eqeq2 2752 |
. . . . . . . . . . . . 13
⊢ (𝑍 = (𝐹‘0) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘0))) |
142 | 141 | eqcoms 2748 |
. . . . . . . . . . . 12
⊢ ((𝐹‘0) = 𝑍 → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘0))) |
143 | 142 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘0))) |
144 | 97 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
145 | 143, 144 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
146 | 145 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
147 | 133, 140,
146 | 3jaod 1429 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
148 | 147 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑋 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
149 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (𝐹‘0) = 𝑍) |
150 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (𝐹‘1) = 𝑌) |
151 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (𝐹‘2) = 𝑋) |
152 | 149, 150,
151 | 3jca 1128 |
. . . . . . . . . . . 12
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)) |
153 | 152 | olcd 873 |
. . . . . . . . . . 11
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))) |
154 | 153 | 3mix3d 1338 |
. . . . . . . . . 10
⊢ ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |
155 | 154 | ex 412 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
156 | 46 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1))) |
157 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
158 | 157 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
159 | 156, 158 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
160 | 145 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
161 | 155, 159,
160 | 3jaod 1429 |
. . . . . . . 8
⊢ (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
162 | 161 | ex 412 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑌 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
163 | | eqeq2 2752 |
. . . . . . . . . 10
⊢ (𝑍 = (𝐹‘0) → ((𝐹‘1) = 𝑍 ↔ (𝐹‘1) = (𝐹‘0))) |
164 | 163 | eqcoms 2748 |
. . . . . . . . 9
⊢ ((𝐹‘0) = 𝑍 → ((𝐹‘1) = 𝑍 ↔ (𝐹‘1) = (𝐹‘0))) |
165 | 164 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑍 ↔ (𝐹‘1) = (𝐹‘0))) |
166 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
167 | 165, 166 | sylbid 240 |
. . . . . . 7
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑍 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
168 | 148, 162,
167 | 3jaod 1429 |
. . . . . 6
⊢ ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))) |
169 | 168 | ex 412 |
. . . . 5
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑍 → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))) |
170 | 86, 129, 169 | 3jaod 1429 |
. . . 4
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))) |
171 | 170 | 3impd 1348 |
. . 3
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍) ∧ ((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) ∧ ((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍)) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
172 | 22, 171 | syl5 34 |
. 2
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (((𝐹‘0) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘2) ∈ {𝑋, 𝑌, 𝑍}) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))) |
173 | 6, 12, 18, 172 | mp3and 1464 |
1
⊢ (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))) |