MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvf1tp Structured version   Visualization version   GIF version

Theorem fvf1tp 13711
Description: Values of a one-to-one function between two sets with three elements. Actually, such a function is a bijection. (Contributed by AV, 23-Jul-2025.)
Assertion
Ref Expression
fvf1tp (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))

Proof of Theorem fvf1tp
StepHypRef Expression
1 f1f 6724 . . 3 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 𝐹:(0..^3)⟶{𝑋, 𝑌, 𝑍})
2 3nn 12225 . . . . 5 3 ∈ ℕ
3 lbfzo0 13620 . . . . 5 (0 ∈ (0..^3) ↔ 3 ∈ ℕ)
42, 3mpbir 231 . . . 4 0 ∈ (0..^3)
54a1i 11 . . 3 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 0 ∈ (0..^3))
61, 5ffvelcdmd 7023 . 2 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (𝐹‘0) ∈ {𝑋, 𝑌, 𝑍})
7 1nn0 12418 . . . . 5 1 ∈ ℕ0
8 1lt3 12314 . . . . 5 1 < 3
9 elfzo0 13621 . . . . 5 (1 ∈ (0..^3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 1 < 3))
107, 2, 8, 9mpbir3an 1342 . . . 4 1 ∈ (0..^3)
1110a1i 11 . . 3 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 1 ∈ (0..^3))
121, 11ffvelcdmd 7023 . 2 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (𝐹‘1) ∈ {𝑋, 𝑌, 𝑍})
13 2nn0 12419 . . . . 5 2 ∈ ℕ0
14 2lt3 12313 . . . . 5 2 < 3
15 elfzo0 13621 . . . . 5 (2 ∈ (0..^3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3))
1613, 2, 14, 15mpbir3an 1342 . . . 4 2 ∈ (0..^3)
1716a1i 11 . . 3 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → 2 ∈ (0..^3))
181, 17ffvelcdmd 7023 . 2 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (𝐹‘2) ∈ {𝑋, 𝑌, 𝑍})
19 eltpi 4642 . . . 4 ((𝐹‘0) ∈ {𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍))
20 eltpi 4642 . . . 4 ((𝐹‘1) ∈ {𝑋, 𝑌, 𝑍} → ((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍))
21 eltpi 4642 . . . 4 ((𝐹‘2) ∈ {𝑋, 𝑌, 𝑍} → ((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍))
2219, 20, 213anim123i 1151 . . 3 (((𝐹‘0) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘2) ∈ {𝑋, 𝑌, 𝑍}) → (((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍) ∧ ((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) ∧ ((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍)))
23 eqeq2 2741 . . . . . . . . . 10 (𝑋 = (𝐹‘0) → ((𝐹‘1) = 𝑋 ↔ (𝐹‘1) = (𝐹‘0)))
2423eqcoms 2737 . . . . . . . . 9 ((𝐹‘0) = 𝑋 → ((𝐹‘1) = 𝑋 ↔ (𝐹‘1) = (𝐹‘0)))
2524adantl 481 . . . . . . . 8 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑋 ↔ (𝐹‘1) = (𝐹‘0)))
26 f1veqaeq 7197 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (1 ∈ (0..^3) ∧ 0 ∈ (0..^3))) → ((𝐹‘1) = (𝐹‘0) → 1 = 0))
2710, 4, 26mpanr12 705 . . . . . . . . . 10 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘1) = (𝐹‘0) → 1 = 0))
28 ax-1ne0 11097 . . . . . . . . . 10 1 ≠ 0
29 eqneqall 2936 . . . . . . . . . 10 (1 = 0 → (1 ≠ 0 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
3027, 28, 29syl6mpi 67 . . . . . . . . 9 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
3130adantr 480 . . . . . . . 8 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
3225, 31sylbid 240 . . . . . . 7 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑋 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
33 eqeq2 2741 . . . . . . . . . . . . 13 (𝑋 = (𝐹‘0) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘0)))
3433eqcoms 2737 . . . . . . . . . . . 12 ((𝐹‘0) = 𝑋 → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘0)))
3534adantl 481 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘0)))
3616, 4pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ (0..^3) ∧ 0 ∈ (0..^3))
3736a1i 11 . . . . . . . . . . . . 13 ((𝐹‘0) = 𝑋 → (2 ∈ (0..^3) ∧ 0 ∈ (0..^3)))
38 f1veqaeq 7197 . . . . . . . . . . . . 13 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (2 ∈ (0..^3) ∧ 0 ∈ (0..^3))) → ((𝐹‘2) = (𝐹‘0) → 2 = 0))
3937, 38sylan2 593 . . . . . . . . . . . 12 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘0) → 2 = 0))
40 2ne0 12250 . . . . . . . . . . . 12 2 ≠ 0
41 eqneqall 2936 . . . . . . . . . . . 12 (2 = 0 → (2 ≠ 0 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
4239, 40, 41syl6mpi 67 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
4335, 42sylbid 240 . . . . . . . . . 10 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
4443adantr 480 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
45 eqeq2 2741 . . . . . . . . . . . 12 (𝑌 = (𝐹‘1) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1)))
4645eqcoms 2737 . . . . . . . . . . 11 ((𝐹‘1) = 𝑌 → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1)))
4746adantl 481 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1)))
4816, 10pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ (0..^3) ∧ 1 ∈ (0..^3))
4948a1i 11 . . . . . . . . . . . . 13 ((𝐹‘0) = 𝑋 → (2 ∈ (0..^3) ∧ 1 ∈ (0..^3)))
50 f1veqaeq 7197 . . . . . . . . . . . . 13 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (2 ∈ (0..^3) ∧ 1 ∈ (0..^3))) → ((𝐹‘2) = (𝐹‘1) → 2 = 1))
5149, 50sylan2 593 . . . . . . . . . . . 12 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → 2 = 1))
52 1ne2 12349 . . . . . . . . . . . . 13 1 ≠ 2
5352necomi 2979 . . . . . . . . . . . 12 2 ≠ 1
54 eqneqall 2936 . . . . . . . . . . . 12 (2 = 1 → (2 ≠ 1 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
5551, 53, 54syl6mpi 67 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
5655adantr 480 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
5747, 56sylbid 240 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
58 simpllr 775 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (𝐹‘0) = 𝑋)
59 simplr 768 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (𝐹‘1) = 𝑌)
60 simpr 484 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (𝐹‘2) = 𝑍)
6158, 59, 603jca 1128 . . . . . . . . . . . 12 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍))
6261orcd 873 . . . . . . . . . . 11 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → (((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)))
63623mix1d 1337 . . . . . . . . . 10 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))
6463ex 412 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
6544, 57, 643jaod 1431 . . . . . . . 8 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑌) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
6665ex 412 . . . . . . 7 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑌 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
6743adantr 480 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
68 simpllr 775 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (𝐹‘0) = 𝑋)
69 simplr 768 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (𝐹‘1) = 𝑍)
70 simpr 484 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (𝐹‘2) = 𝑌)
7168, 69, 703jca 1128 . . . . . . . . . . . 12 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌))
7271olcd 874 . . . . . . . . . . 11 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → (((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)))
73723mix1d 1337 . . . . . . . . . 10 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑌) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))
7473ex 412 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
75 eqeq2 2741 . . . . . . . . . . . 12 (𝑍 = (𝐹‘1) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1)))
7675eqcoms 2737 . . . . . . . . . . 11 ((𝐹‘1) = 𝑍 → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1)))
7776adantl 481 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1)))
7816, 10, 50mpanr12 705 . . . . . . . . . . . . 13 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘1) → 2 = 1))
7978, 53, 54syl6mpi 67 . . . . . . . . . . . 12 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
8079adantr 480 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
8180adantr 480 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
8277, 81sylbid 240 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
8367, 74, 823jaod 1431 . . . . . . . 8 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) ∧ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
8483ex 412 . . . . . . 7 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → ((𝐹‘1) = 𝑍 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
8532, 66, 843jaod 1431 . . . . . 6 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑋) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
8685ex 412 . . . . 5 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑋 → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))))
87 eqeq2 2741 . . . . . . . . . . . 12 (𝑋 = (𝐹‘1) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1)))
8887eqcoms 2737 . . . . . . . . . . 11 ((𝐹‘1) = 𝑋 → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1)))
8988adantl 481 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1)))
9079adantr 480 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
9190adantr 480 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
9289, 91sylbid 240 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
93 eqeq2 2741 . . . . . . . . . . . . 13 (𝑌 = (𝐹‘0) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘0)))
9493eqcoms 2737 . . . . . . . . . . . 12 ((𝐹‘0) = 𝑌 → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘0)))
9594adantl 481 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘0)))
9616, 4, 38mpanr12 705 . . . . . . . . . . . . 13 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘0) → 2 = 0))
9796, 40, 41syl6mpi 67 . . . . . . . . . . . 12 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
9897adantr 480 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
9995, 98sylbid 240 . . . . . . . . . 10 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
10099adantr 480 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
101 simpllr 775 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (𝐹‘0) = 𝑌)
102 simplr 768 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (𝐹‘1) = 𝑋)
103 simpr 484 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (𝐹‘2) = 𝑍)
104101, 102, 1033jca 1128 . . . . . . . . . . . 12 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍))
105104orcd 873 . . . . . . . . . . 11 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)))
1061053mix2d 1338 . . . . . . . . . 10 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))
107106ex 412 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
10892, 100, 1073jaod 1431 . . . . . . . 8 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑋) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
109108ex 412 . . . . . . 7 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑋 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
110 eqeq2 2741 . . . . . . . . . 10 (𝑌 = (𝐹‘0) → ((𝐹‘1) = 𝑌 ↔ (𝐹‘1) = (𝐹‘0)))
111110eqcoms 2737 . . . . . . . . 9 ((𝐹‘0) = 𝑌 → ((𝐹‘1) = 𝑌 ↔ (𝐹‘1) = (𝐹‘0)))
112111adantl 481 . . . . . . . 8 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑌 ↔ (𝐹‘1) = (𝐹‘0)))
11330adantr 480 . . . . . . . 8 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
114112, 113sylbid 240 . . . . . . 7 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑌 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
115 simpllr 775 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (𝐹‘0) = 𝑌)
116 simplr 768 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (𝐹‘1) = 𝑍)
117 simpr 484 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (𝐹‘2) = 𝑋)
118115, 116, 1173jca 1128 . . . . . . . . . . . 12 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋))
119118olcd 874 . . . . . . . . . . 11 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)))
1201193mix2d 1338 . . . . . . . . . 10 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) ∧ (𝐹‘2) = 𝑋) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))
121120ex 412 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
12299adantr 480 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
12376adantl 481 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘1)))
12490adantr 480 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
125123, 124sylbid 240 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
126121, 122, 1253jaod 1431 . . . . . . . 8 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) ∧ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
127126ex 412 . . . . . . 7 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → ((𝐹‘1) = 𝑍 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
128109, 114, 1273jaod 1431 . . . . . 6 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑌) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
129128ex 412 . . . . 5 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑌 → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))))
13088adantl 481 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 ↔ (𝐹‘2) = (𝐹‘1)))
13179adantr 480 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
132130, 131sylbid 240 . . . . . . . . . 10 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
133132adantlr 715 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
134 simpllr 775 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (𝐹‘0) = 𝑍)
135 simplr 768 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (𝐹‘1) = 𝑋)
136 simpr 484 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (𝐹‘2) = 𝑌)
137134, 135, 1363jca 1128 . . . . . . . . . . . 12 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌))
138137orcd 873 . . . . . . . . . . 11 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))
1391383mix3d 1339 . . . . . . . . . 10 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) ∧ (𝐹‘2) = 𝑌) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))
140139ex 412 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
141 eqeq2 2741 . . . . . . . . . . . . 13 (𝑍 = (𝐹‘0) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘0)))
142141eqcoms 2737 . . . . . . . . . . . 12 ((𝐹‘0) = 𝑍 → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘0)))
143142adantl 481 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = 𝑍 ↔ (𝐹‘2) = (𝐹‘0)))
14497adantr 480 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = (𝐹‘0) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
145143, 144sylbid 240 . . . . . . . . . 10 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
146145adantr 480 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
147133, 140, 1463jaod 1431 . . . . . . . 8 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑋) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
148147ex 412 . . . . . . 7 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑋 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
149 simpllr 775 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (𝐹‘0) = 𝑍)
150 simplr 768 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (𝐹‘1) = 𝑌)
151 simpr 484 . . . . . . . . . . . . 13 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (𝐹‘2) = 𝑋)
152149, 150, 1513jca 1128 . . . . . . . . . . . 12 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))
153152olcd 874 . . . . . . . . . . 11 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))
1541533mix3d 1339 . . . . . . . . . 10 ((((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) ∧ (𝐹‘2) = 𝑋) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))
155154ex 412 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑋 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
15646adantl 481 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 ↔ (𝐹‘2) = (𝐹‘1)))
15779adantr 480 . . . . . . . . . . 11 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
158157adantr 480 . . . . . . . . . 10 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = (𝐹‘1) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
159156, 158sylbid 240 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑌 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
160145adantr 480 . . . . . . . . 9 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → ((𝐹‘2) = 𝑍 → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
161155, 159, 1603jaod 1431 . . . . . . . 8 (((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) ∧ (𝐹‘1) = 𝑌) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
162161ex 412 . . . . . . 7 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑌 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
163 eqeq2 2741 . . . . . . . . . 10 (𝑍 = (𝐹‘0) → ((𝐹‘1) = 𝑍 ↔ (𝐹‘1) = (𝐹‘0)))
164163eqcoms 2737 . . . . . . . . 9 ((𝐹‘0) = 𝑍 → ((𝐹‘1) = 𝑍 ↔ (𝐹‘1) = (𝐹‘0)))
165164adantl 481 . . . . . . . 8 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑍 ↔ (𝐹‘1) = (𝐹‘0)))
16630adantr 480 . . . . . . . 8 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = (𝐹‘0) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
167165, 166sylbid 240 . . . . . . 7 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → ((𝐹‘1) = 𝑍 → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
168148, 162, 1673jaod 1431 . . . . . 6 ((𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} ∧ (𝐹‘0) = 𝑍) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))))
169168ex 412 . . . . 5 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((𝐹‘0) = 𝑍 → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))))
17086, 129, 1693jaod 1431 . . . 4 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍) → (((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) → (((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))))
1711703impd 1349 . . 3 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((((𝐹‘0) = 𝑋 ∨ (𝐹‘0) = 𝑌 ∨ (𝐹‘0) = 𝑍) ∧ ((𝐹‘1) = 𝑋 ∨ (𝐹‘1) = 𝑌 ∨ (𝐹‘1) = 𝑍) ∧ ((𝐹‘2) = 𝑋 ∨ (𝐹‘2) = 𝑌 ∨ (𝐹‘2) = 𝑍)) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
17222, 171syl5 34 . 2 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → (((𝐹‘0) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘1) ∈ {𝑋, 𝑌, 𝑍} ∧ (𝐹‘2) ∈ {𝑋, 𝑌, 𝑍}) → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋)))))
1736, 12, 18, 172mp3and 1466 1 (𝐹:(0..^3)–1-1→{𝑋, 𝑌, 𝑍} → ((((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑋 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑌)) ∨ (((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑍) ∨ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑍 ∧ (𝐹‘2) = 𝑋)) ∨ (((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑋 ∧ (𝐹‘2) = 𝑌) ∨ ((𝐹‘0) = 𝑍 ∧ (𝐹‘1) = 𝑌 ∧ (𝐹‘2) = 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {ctp 4583   class class class wbr 5095  1-1wf1 6483  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   < clt 11168  cn 12146  2c2 12201  3c3 12202  0cn0 12402  ..^cfzo 13575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576
This theorem is referenced by:  grtriproplem  47922  grtrif1o  47925
  Copyright terms: Public domain W3C validator