| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumcom | Structured version Visualization version GIF version | ||
| Description: Commute the arguments of a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumxp.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumxp.z | ⊢ 0 = (0g‘𝐺) |
| gsumxp.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumxp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumxp.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| gsumcom.f | ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) |
| gsumcom.u | ⊢ (𝜑 → 𝑈 ∈ Fin) |
| gsumcom.n | ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) |
| Ref | Expression |
|---|---|
| gsumcom | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐶, 𝑗 ∈ 𝐴 ↦ 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumxp.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumxp.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsumxp.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | gsumxp.r | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐶 ∈ 𝑊) |
| 7 | gsumcom.f | . 2 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶)) → 𝑋 ∈ 𝐵) | |
| 8 | gsumcom.u | . 2 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
| 9 | gsumcom.n | . 2 ⊢ ((𝜑 ∧ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 ) | |
| 10 | ancom 460 | . . 3 ⊢ ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴)) | |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶) ↔ (𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴))) |
| 12 | 1, 2, 3, 4, 6, 7, 8, 9, 5, 11 | gsumcom2 19956 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴, 𝑘 ∈ 𝐶 ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ 𝐶, 𝑗 ∈ 𝐴 ↦ 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Fincfn 8959 Basecbs 17228 0gc0g 17453 Σg cgsu 17454 CMndccmn 19761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-0g 17455 df-gsum 17456 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-cntz 19300 df-cmn 19763 |
| This theorem is referenced by: gsumcom3 19959 |
| Copyright terms: Public domain | W3C validator |