![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumsnf | Structured version Visualization version GIF version |
Description: Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsumsnf.c | ⊢ Ⅎ𝑘𝐶 |
gsumsnf.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsnf.s | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
gsumsnf | ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsnf.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | simp1 1133 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → 𝐺 ∈ Mnd) | |
3 | simp2 1134 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → 𝑀 ∈ 𝑉) | |
4 | simp3 1135 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
5 | gsumsnf.s | . . 3 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) | |
6 | 5 | adantl 480 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
7 | nfv 1910 | . . 3 ⊢ Ⅎ𝑘 𝐺 ∈ Mnd | |
8 | nfv 1910 | . . 3 ⊢ Ⅎ𝑘 𝑀 ∈ 𝑉 | |
9 | gsumsnf.c | . . . 4 ⊢ Ⅎ𝑘𝐶 | |
10 | 9 | nfel1 2909 | . . 3 ⊢ Ⅎ𝑘 𝐶 ∈ 𝐵 |
11 | 7, 8, 10 | nf3an 1897 | . 2 ⊢ Ⅎ𝑘(𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) |
12 | 1, 2, 3, 4, 6, 11, 9 | gsumsnfd 19945 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2876 {csn 4623 ↦ cmpt 5228 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 Σg cgsu 17450 Mndcmnd 18722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-oi 9546 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-fzo 13676 df-seq 14016 df-hash 14343 df-0g 17451 df-gsum 17452 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-mulg 19058 df-cntz 19307 |
This theorem is referenced by: gsumsn 19948 |
Copyright terms: Public domain | W3C validator |