| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumsnf | Structured version Visualization version GIF version | ||
| Description: Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Proof shortened by AV, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| gsumsnf.c | ⊢ Ⅎ𝑘𝐶 |
| gsumsnf.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumsnf.s | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| gsumsnf | ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnf.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | simp1 1136 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → 𝐺 ∈ Mnd) | |
| 3 | simp2 1137 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → 𝑀 ∈ 𝑉) | |
| 4 | simp3 1138 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
| 5 | gsumsnf.s | . . 3 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) | |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
| 7 | nfv 1914 | . . 3 ⊢ Ⅎ𝑘 𝐺 ∈ Mnd | |
| 8 | nfv 1914 | . . 3 ⊢ Ⅎ𝑘 𝑀 ∈ 𝑉 | |
| 9 | gsumsnf.c | . . . 4 ⊢ Ⅎ𝑘𝐶 | |
| 10 | 9 | nfel1 2916 | . . 3 ⊢ Ⅎ𝑘 𝐶 ∈ 𝐵 |
| 11 | 7, 8, 10 | nf3an 1901 | . 2 ⊢ Ⅎ𝑘(𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) |
| 12 | 1, 2, 3, 4, 6, 11, 9 | gsumsnfd 19937 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2884 {csn 4606 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Σg cgsu 17459 Mndcmnd 18717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-0g 17460 df-gsum 17461 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mulg 19056 df-cntz 19305 |
| This theorem is referenced by: gsumsn 19940 |
| Copyright terms: Public domain | W3C validator |