Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumsn | Structured version Visualization version GIF version |
Description: Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 24-Apr-2016.) (Proof shortened by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsumsn.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsn.s | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
gsumsn | ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2905 | . 2 ⊢ Ⅎ𝑘𝐶 | |
2 | gsumsn.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
3 | gsumsn.s | . 2 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) | |
4 | 1, 2, 3 | gsumsnf 19629 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {csn 4571 ↦ cmpt 5170 ‘cfv 6466 (class class class)co 7317 Basecbs 16989 Σg cgsu 17228 Mndcmnd 18462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-supp 8027 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-n0 12314 df-z 12400 df-uz 12663 df-fz 13320 df-fzo 13463 df-seq 13802 df-hash 14125 df-0g 17229 df-gsum 17230 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-mulg 18777 df-cntz 18999 |
This theorem is referenced by: gsumpr 19631 gsumpt 19638 dpjidcl 19736 srgbinomlem3 19853 srgbinomlem4 19854 srgbinom 19856 islindf4 21128 psrlidm 21255 psrridm 21256 mplmonmul 21320 ply1coe 21550 mat1dimmul 21708 mdet0pr 21824 m1detdiag 21829 mdetdiaglem 21830 mdetrlin 21834 mdetrsca 21835 m2detleib 21863 chfacfscmulgsum 22092 chfacfpmmulgsum 22096 tmdgsum 23329 tsmsxplem1 23387 tsmsxplem2 23388 imasdsf1olem 23609 tdeglem4 25307 tdeglem4OLD 25308 tdeglem2 25309 amgm 26223 wilthlem2 26301 gsumle 31485 signstf0 32687 evlsbagval 40491 sge0tsms 44169 lincvalsng 46022 snlindsntor 46077 |
Copyright terms: Public domain | W3C validator |