Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumsnfd | Structured version Visualization version GIF version |
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsumsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumsnd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
gsumsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
gsumsnfd.p | ⊢ Ⅎ𝑘𝜑 |
gsumsnfd.c | ⊢ Ⅎ𝑘𝐶 |
Ref | Expression |
---|---|
gsumsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsnfd.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
2 | elsni 4590 | . . . . . 6 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
3 | gsumsnd.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) | |
4 | 2, 3 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝐴 = 𝐶) |
5 | 1, 4 | mpteq2da 5190 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
6 | 5 | oveq2d 7353 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
7 | gsumsnd.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
8 | snfi 8909 | . . . . 5 ⊢ {𝑀} ∈ Fin | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑀} ∈ Fin) |
10 | gsumsnd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
11 | gsumsnfd.c | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
12 | gsumsnd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
13 | eqid 2736 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
14 | 11, 12, 13 | gsumconstf 19631 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ {𝑀} ∈ Fin ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
15 | 7, 9, 10, 14 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
16 | 6, 15 | eqtrd 2776 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
17 | gsumsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
18 | hashsng 14184 | . . . 4 ⊢ (𝑀 ∈ 𝑉 → (♯‘{𝑀}) = 1) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘{𝑀}) = 1) |
20 | 19 | oveq1d 7352 | . 2 ⊢ (𝜑 → ((♯‘{𝑀})(.g‘𝐺)𝐶) = (1(.g‘𝐺)𝐶)) |
21 | 12, 13 | mulg1 18807 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (1(.g‘𝐺)𝐶) = 𝐶) |
22 | 10, 21 | syl 17 | . 2 ⊢ (𝜑 → (1(.g‘𝐺)𝐶) = 𝐶) |
23 | 16, 20, 22 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2884 {csn 4573 ↦ cmpt 5175 ‘cfv 6479 (class class class)co 7337 Fincfn 8804 1c1 10973 ♯chash 14145 Basecbs 17009 Σg cgsu 17248 Mndcmnd 18482 .gcmg 18796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-seq 13823 df-hash 14146 df-0g 17249 df-gsum 17250 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mulg 18797 df-cntz 19019 |
This theorem is referenced by: gsumsnd 19648 gsumsnf 19649 gsumunsnfd 19653 esumsnf 32330 gsumdifsndf 45734 |
Copyright terms: Public domain | W3C validator |