MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsnfd Structured version   Visualization version   GIF version

Theorem gsumsnfd 19580
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
Hypotheses
Ref Expression
gsumsnd.b 𝐵 = (Base‘𝐺)
gsumsnd.g (𝜑𝐺 ∈ Mnd)
gsumsnd.m (𝜑𝑀𝑉)
gsumsnd.c (𝜑𝐶𝐵)
gsumsnd.s ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐶)
gsumsnfd.p 𝑘𝜑
gsumsnfd.c 𝑘𝐶
Assertion
Ref Expression
gsumsnfd (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem gsumsnfd
StepHypRef Expression
1 gsumsnfd.p . . . . 5 𝑘𝜑
2 elsni 4581 . . . . . 6 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
3 gsumsnd.s . . . . . 6 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐶)
42, 3sylan2 592 . . . . 5 ((𝜑𝑘 ∈ {𝑀}) → 𝐴 = 𝐶)
51, 4mpteq2da 5175 . . . 4 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶))
65oveq2d 7311 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)))
7 gsumsnd.g . . . 4 (𝜑𝐺 ∈ Mnd)
8 snfi 8858 . . . . 5 {𝑀} ∈ Fin
98a1i 11 . . . 4 (𝜑 → {𝑀} ∈ Fin)
10 gsumsnd.c . . . 4 (𝜑𝐶𝐵)
11 gsumsnfd.c . . . . 5 𝑘𝐶
12 gsumsnd.b . . . . 5 𝐵 = (Base‘𝐺)
13 eqid 2733 . . . . 5 (.g𝐺) = (.g𝐺)
1411, 12, 13gsumconstf 19564 . . . 4 ((𝐺 ∈ Mnd ∧ {𝑀} ∈ Fin ∧ 𝐶𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g𝐺)𝐶))
157, 9, 10, 14syl3anc 1369 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g𝐺)𝐶))
166, 15eqtrd 2773 . 2 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = ((♯‘{𝑀})(.g𝐺)𝐶))
17 gsumsnd.m . . . 4 (𝜑𝑀𝑉)
18 hashsng 14112 . . . 4 (𝑀𝑉 → (♯‘{𝑀}) = 1)
1917, 18syl 17 . . 3 (𝜑 → (♯‘{𝑀}) = 1)
2019oveq1d 7310 . 2 (𝜑 → ((♯‘{𝑀})(.g𝐺)𝐶) = (1(.g𝐺)𝐶))
2112, 13mulg1 18739 . . 3 (𝐶𝐵 → (1(.g𝐺)𝐶) = 𝐶)
2210, 21syl 17 . 2 (𝜑 → (1(.g𝐺)𝐶) = 𝐶)
2316, 20, 223eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2101  wnfc 2882  {csn 4564  cmpt 5160  cfv 6447  (class class class)co 7295  Fincfn 8753  1c1 10900  chash 14072  Basecbs 16940   Σg cgsu 17179  Mndcmnd 18413  .gcmg 18728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-supp 7998  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-n0 12262  df-z 12348  df-uz 12611  df-fz 13268  df-fzo 13411  df-seq 13750  df-hash 14073  df-0g 17180  df-gsum 17181  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-mulg 18729  df-cntz 18951
This theorem is referenced by:  gsumsnd  19581  gsumsnf  19582  gsumunsnfd  19586  esumsnf  32060  gsumdifsndf  45415
  Copyright terms: Public domain W3C validator