Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumsnfd | Structured version Visualization version GIF version |
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsumsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumsnd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
gsumsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
gsumsnfd.p | ⊢ Ⅎ𝑘𝜑 |
gsumsnfd.c | ⊢ Ⅎ𝑘𝐶 |
Ref | Expression |
---|---|
gsumsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsnfd.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
2 | elsni 4575 | . . . . . 6 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
3 | gsumsnd.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) | |
4 | 2, 3 | sylan2 592 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝐴 = 𝐶) |
5 | 1, 4 | mpteq2da 5168 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
6 | 5 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
7 | gsumsnd.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
8 | snfi 8788 | . . . . 5 ⊢ {𝑀} ∈ Fin | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑀} ∈ Fin) |
10 | gsumsnd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
11 | gsumsnfd.c | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
12 | gsumsnd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
13 | eqid 2738 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
14 | 11, 12, 13 | gsumconstf 19451 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ {𝑀} ∈ Fin ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
15 | 7, 9, 10, 14 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
16 | 6, 15 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
17 | gsumsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
18 | hashsng 14012 | . . . 4 ⊢ (𝑀 ∈ 𝑉 → (♯‘{𝑀}) = 1) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘{𝑀}) = 1) |
20 | 19 | oveq1d 7270 | . 2 ⊢ (𝜑 → ((♯‘{𝑀})(.g‘𝐺)𝐶) = (1(.g‘𝐺)𝐶)) |
21 | 12, 13 | mulg1 18626 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (1(.g‘𝐺)𝐶) = 𝐶) |
22 | 10, 21 | syl 17 | . 2 ⊢ (𝜑 → (1(.g‘𝐺)𝐶) = 𝐶) |
23 | 16, 20, 22 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 {csn 4558 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 1c1 10803 ♯chash 13972 Basecbs 16840 Σg cgsu 17068 Mndcmnd 18300 .gcmg 18615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mulg 18616 df-cntz 18838 |
This theorem is referenced by: gsumsnd 19468 gsumsnf 19469 gsumunsnfd 19473 esumsnf 31932 gsumdifsndf 45263 |
Copyright terms: Public domain | W3C validator |