![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumsnfd | Structured version Visualization version GIF version |
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsumsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumsnd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
gsumsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
gsumsnfd.p | ⊢ Ⅎ𝑘𝜑 |
gsumsnfd.c | ⊢ Ⅎ𝑘𝐶 |
Ref | Expression |
---|---|
gsumsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsnfd.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
2 | elsni 4415 | . . . . . 6 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
3 | gsumsnd.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) | |
4 | 2, 3 | sylan2 588 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝐴 = 𝐶) |
5 | 1, 4 | mpteq2da 4967 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
6 | 5 | oveq2d 6922 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
7 | gsumsnd.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
8 | snfi 8308 | . . . . 5 ⊢ {𝑀} ∈ Fin | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑀} ∈ Fin) |
10 | gsumsnd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
11 | gsumsnfd.c | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
12 | gsumsnd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
13 | eqid 2826 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
14 | 11, 12, 13 | gsumconstf 18689 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ {𝑀} ∈ Fin ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
15 | 7, 9, 10, 14 | syl3anc 1496 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
16 | 6, 15 | eqtrd 2862 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = ((♯‘{𝑀})(.g‘𝐺)𝐶)) |
17 | gsumsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
18 | hashsng 13450 | . . . 4 ⊢ (𝑀 ∈ 𝑉 → (♯‘{𝑀}) = 1) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (♯‘{𝑀}) = 1) |
20 | 19 | oveq1d 6921 | . 2 ⊢ (𝜑 → ((♯‘{𝑀})(.g‘𝐺)𝐶) = (1(.g‘𝐺)𝐶)) |
21 | 12, 13 | mulg1 17903 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (1(.g‘𝐺)𝐶) = 𝐶) |
22 | 10, 21 | syl 17 | . 2 ⊢ (𝜑 → (1(.g‘𝐺)𝐶) = 𝐶) |
23 | 16, 20, 22 | 3eqtrd 2866 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 Ⅎwnf 1884 ∈ wcel 2166 Ⅎwnfc 2957 {csn 4398 ↦ cmpt 4953 ‘cfv 6124 (class class class)co 6906 Fincfn 8223 1c1 10254 ♯chash 13411 Basecbs 16223 Σg cgsu 16455 Mndcmnd 17648 .gcmg 17895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-supp 7561 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-oi 8685 df-card 9079 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-fzo 12762 df-seq 13097 df-hash 13412 df-0g 16456 df-gsum 16457 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-mulg 17896 df-cntz 18101 |
This theorem is referenced by: gsumsnd 18706 gsumsnf 18707 gsumunsnfd 18710 esumsnf 30672 gsumdifsndf 42992 |
Copyright terms: Public domain | W3C validator |