Step | Hyp | Ref
| Expression |
1 | | dihjatcclem.h |
. . . . 5
β’ π» = (LHypβπΎ) |
2 | | dihjatcclem.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
3 | | dihjatcclem.k |
. . . . 5
β’ (π β (πΎ β HL β§ π β π»)) |
4 | 1, 2, 3 | dvhlmod 39619 |
. . . 4
β’ (π β π β LMod) |
5 | | lmodabl 20384 |
. . . 4
β’ (π β LMod β π β Abel) |
6 | 4, 5 | syl 17 |
. . 3
β’ (π β π β Abel) |
7 | | eqid 2733 |
. . . . . 6
β’
(LSubSpβπ) =
(LSubSpβπ) |
8 | 7 | lsssssubg 20434 |
. . . . 5
β’ (π β LMod β
(LSubSpβπ) β
(SubGrpβπ)) |
9 | 4, 8 | syl 17 |
. . . 4
β’ (π β (LSubSpβπ) β (SubGrpβπ)) |
10 | | dihjatcclem.p |
. . . . . . 7
β’ (π β (π β π΄ β§ Β¬ π β€ π)) |
11 | 10 | simpld 496 |
. . . . . 6
β’ (π β π β π΄) |
12 | | dihjatcclem.b |
. . . . . . 7
β’ π΅ = (BaseβπΎ) |
13 | | dihjatcclem.a |
. . . . . . 7
β’ π΄ = (AtomsβπΎ) |
14 | 12, 13 | atbase 37797 |
. . . . . 6
β’ (π β π΄ β π β π΅) |
15 | 11, 14 | syl 17 |
. . . . 5
β’ (π β π β π΅) |
16 | | dihjatcclem.i |
. . . . . 6
β’ πΌ = ((DIsoHβπΎ)βπ) |
17 | 12, 1, 16, 2, 7 | dihlss 39759 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β (LSubSpβπ)) |
18 | 3, 15, 17 | syl2anc 585 |
. . . 4
β’ (π β (πΌβπ) β (LSubSpβπ)) |
19 | 9, 18 | sseldd 3946 |
. . 3
β’ (π β (πΌβπ) β (SubGrpβπ)) |
20 | | dihjatcclem.v |
. . . . . 6
β’ π = ((π β¨ π) β§ π) |
21 | 3 | simpld 496 |
. . . . . . . 8
β’ (π β πΎ β HL) |
22 | 21 | hllatd 37872 |
. . . . . . 7
β’ (π β πΎ β Lat) |
23 | | dihjatcclem.q |
. . . . . . . . 9
β’ (π β (π β π΄ β§ Β¬ π β€ π)) |
24 | 23 | simpld 496 |
. . . . . . . 8
β’ (π β π β π΄) |
25 | | dihjatcclem.j |
. . . . . . . . 9
β’ β¨ =
(joinβπΎ) |
26 | 12, 25, 13 | hlatjcl 37875 |
. . . . . . . 8
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β π΅) |
27 | 21, 11, 24, 26 | syl3anc 1372 |
. . . . . . 7
β’ (π β (π β¨ π) β π΅) |
28 | 3 | simprd 497 |
. . . . . . . 8
β’ (π β π β π») |
29 | 12, 1 | lhpbase 38507 |
. . . . . . . 8
β’ (π β π» β π β π΅) |
30 | 28, 29 | syl 17 |
. . . . . . 7
β’ (π β π β π΅) |
31 | | dihjatcclem.m |
. . . . . . . 8
β’ β§ =
(meetβπΎ) |
32 | 12, 31 | latmcl 18334 |
. . . . . . 7
β’ ((πΎ β Lat β§ (π β¨ π) β π΅ β§ π β π΅) β ((π β¨ π) β§ π) β π΅) |
33 | 22, 27, 30, 32 | syl3anc 1372 |
. . . . . 6
β’ (π β ((π β¨ π) β§ π) β π΅) |
34 | 20, 33 | eqeltrid 2838 |
. . . . 5
β’ (π β π β π΅) |
35 | 12, 1, 16, 2, 7 | dihlss 39759 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β (LSubSpβπ)) |
36 | 3, 34, 35 | syl2anc 585 |
. . . 4
β’ (π β (πΌβπ) β (LSubSpβπ)) |
37 | 9, 36 | sseldd 3946 |
. . 3
β’ (π β (πΌβπ) β (SubGrpβπ)) |
38 | 12, 13 | atbase 37797 |
. . . . . 6
β’ (π β π΄ β π β π΅) |
39 | 24, 38 | syl 17 |
. . . . 5
β’ (π β π β π΅) |
40 | 12, 1, 16, 2, 7 | dihlss 39759 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πΌβπ) β (LSubSpβπ)) |
41 | 3, 39, 40 | syl2anc 585 |
. . . 4
β’ (π β (πΌβπ) β (LSubSpβπ)) |
42 | 9, 41 | sseldd 3946 |
. . 3
β’ (π β (πΌβπ) β (SubGrpβπ)) |
43 | | dihjatcclem.s |
. . . 4
β’ β =
(LSSumβπ) |
44 | 43 | lsm4 19643 |
. . 3
β’ ((π β Abel β§ ((πΌβπ) β (SubGrpβπ) β§ (πΌβπ) β (SubGrpβπ)) β§ ((πΌβπ) β (SubGrpβπ) β§ (πΌβπ) β (SubGrpβπ))) β (((πΌβπ) β (πΌβπ)) β ((πΌβπ) β (πΌβπ))) = (((πΌβπ) β (πΌβπ)) β ((πΌβπ) β (πΌβπ)))) |
45 | 6, 19, 37, 42, 37, 44 | syl122anc 1380 |
. 2
β’ (π β (((πΌβπ) β (πΌβπ)) β ((πΌβπ) β (πΌβπ))) = (((πΌβπ) β (πΌβπ)) β ((πΌβπ) β (πΌβπ)))) |
46 | 23 | simprd 497 |
. . . . . . . 8
β’ (π β Β¬ π β€ π) |
47 | 46 | intnand 490 |
. . . . . . 7
β’ (π β Β¬ (π β€ π β§ π β€ π)) |
48 | | dihjatcclem.l |
. . . . . . . . 9
β’ β€ =
(leβπΎ) |
49 | 12, 48, 25 | latjle12 18344 |
. . . . . . . 8
β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β€ π β§ π β€ π) β (π β¨ π) β€ π)) |
50 | 22, 15, 39, 30, 49 | syl13anc 1373 |
. . . . . . 7
β’ (π β ((π β€ π β§ π β€ π) β (π β¨ π) β€ π)) |
51 | 47, 50 | mtbid 324 |
. . . . . 6
β’ (π β Β¬ (π β¨ π) β€ π) |
52 | 48, 25, 13 | hlatlej1 37883 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
53 | 21, 11, 24, 52 | syl3anc 1372 |
. . . . . 6
β’ (π β π β€ (π β¨ π)) |
54 | 12, 48, 25, 31, 13, 1, 16, 2, 43 | dihvalcq2 39756 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ ((π β¨ π) β π΅ β§ Β¬ (π β¨ π) β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ (π β¨ π))) β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβ((π β¨ π) β§ π)))) |
55 | 3, 27, 51, 10, 53, 54 | syl122anc 1380 |
. . . . 5
β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβ((π β¨ π) β§ π)))) |
56 | 20 | fveq2i 6846 |
. . . . . 6
β’ (πΌβπ) = (πΌβ((π β¨ π) β§ π)) |
57 | 56 | oveq2i 7369 |
. . . . 5
β’ ((πΌβπ) β (πΌβπ)) = ((πΌβπ) β (πΌβ((π β¨ π) β§ π))) |
58 | 55, 57 | eqtr4di 2791 |
. . . 4
β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |
59 | 48, 25, 13 | hlatlej2 37884 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
60 | 21, 11, 24, 59 | syl3anc 1372 |
. . . . . 6
β’ (π β π β€ (π β¨ π)) |
61 | 12, 48, 25, 31, 13, 1, 16, 2, 43 | dihvalcq2 39756 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ ((π β¨ π) β π΅ β§ Β¬ (π β¨ π) β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ π β€ (π β¨ π))) β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβ((π β¨ π) β§ π)))) |
62 | 3, 27, 51, 23, 60, 61 | syl122anc 1380 |
. . . . 5
β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβ((π β¨ π) β§ π)))) |
63 | 56 | oveq2i 7369 |
. . . . 5
β’ ((πΌβπ) β (πΌβπ)) = ((πΌβπ) β (πΌβ((π β¨ π) β§ π))) |
64 | 62, 63 | eqtr4di 2791 |
. . . 4
β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) |
65 | 58, 64 | oveq12d 7376 |
. . 3
β’ (π β ((πΌβ(π β¨ π)) β (πΌβ(π β¨ π))) = (((πΌβπ) β (πΌβπ)) β ((πΌβπ) β (πΌβπ)))) |
66 | 12, 1, 16, 2, 7 | dihlss 39759 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ (π β¨ π) β π΅) β (πΌβ(π β¨ π)) β (LSubSpβπ)) |
67 | 3, 27, 66 | syl2anc 585 |
. . . . 5
β’ (π β (πΌβ(π β¨ π)) β (LSubSpβπ)) |
68 | 9, 67 | sseldd 3946 |
. . . 4
β’ (π β (πΌβ(π β¨ π)) β (SubGrpβπ)) |
69 | 43 | lsmidm 19450 |
. . . 4
β’ ((πΌβ(π β¨ π)) β (SubGrpβπ) β ((πΌβ(π β¨ π)) β (πΌβ(π β¨ π))) = (πΌβ(π β¨ π))) |
70 | 68, 69 | syl 17 |
. . 3
β’ (π β ((πΌβ(π β¨ π)) β (πΌβ(π β¨ π))) = (πΌβ(π β¨ π))) |
71 | 65, 70 | eqtr3d 2775 |
. 2
β’ (π β (((πΌβπ) β (πΌβπ)) β ((πΌβπ) β (πΌβπ))) = (πΌβ(π β¨ π))) |
72 | 43 | lsmidm 19450 |
. . . 4
β’ ((πΌβπ) β (SubGrpβπ) β ((πΌβπ) β (πΌβπ)) = (πΌβπ)) |
73 | 37, 72 | syl 17 |
. . 3
β’ (π β ((πΌβπ) β (πΌβπ)) = (πΌβπ)) |
74 | 73 | oveq2d 7374 |
. 2
β’ (π β (((πΌβπ) β (πΌβπ)) β ((πΌβπ) β (πΌβπ))) = (((πΌβπ) β (πΌβπ)) β (πΌβπ))) |
75 | 45, 71, 74 | 3eqtr3d 2781 |
1
β’ (π β (πΌβ(π β¨ π)) = (((πΌβπ) β (πΌβπ)) β (πΌβπ))) |