![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgmulrval | Structured version Visualization version GIF version |
Description: Value of the ring multiplication for the ideals of a ring π . (Contributed by Thierry Arnoux, 1-Jun-2024.) |
Ref | Expression |
---|---|
idlsrgmulrval.1 | β’ π = (IDLsrgβπ ) |
idlsrgmulrval.2 | β’ π΅ = (LIdealβπ ) |
idlsrgmulrval.3 | β’ β = (.rβπ) |
idlsrgmulrval.4 | β’ πΊ = (mulGrpβπ ) |
idlsrgmulrval.5 | β’ Β· = (LSSumβπΊ) |
idlsrgmulrval.6 | β’ (π β π β π) |
idlsrgmulrval.7 | β’ (π β πΌ β π΅) |
idlsrgmulrval.8 | β’ (π β π½ β π΅) |
Ref | Expression |
---|---|
idlsrgmulrval | β’ (π β (πΌ β π½) = ((RSpanβπ )β(πΌ Β· π½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgmulrval.3 | . . 3 β’ β = (.rβπ) | |
2 | idlsrgmulrval.6 | . . . 4 β’ (π β π β π) | |
3 | idlsrgmulrval.1 | . . . . 5 β’ π = (IDLsrgβπ ) | |
4 | idlsrgmulrval.2 | . . . . 5 β’ π΅ = (LIdealβπ ) | |
5 | idlsrgmulrval.4 | . . . . 5 β’ πΊ = (mulGrpβπ ) | |
6 | idlsrgmulrval.5 | . . . . 5 β’ Β· = (LSSumβπΊ) | |
7 | 3, 4, 5, 6 | idlsrgmulr 32616 | . . . 4 β’ (π β π β (π₯ β π΅, π¦ β π΅ β¦ ((RSpanβπ )β(π₯ Β· π¦))) = (.rβπ)) |
8 | 2, 7 | syl 17 | . . 3 β’ (π β (π₯ β π΅, π¦ β π΅ β¦ ((RSpanβπ )β(π₯ Β· π¦))) = (.rβπ)) |
9 | 1, 8 | eqtr4id 2791 | . 2 β’ (π β β = (π₯ β π΅, π¦ β π΅ β¦ ((RSpanβπ )β(π₯ Β· π¦)))) |
10 | oveq12 7417 | . . . 4 β’ ((π₯ = πΌ β§ π¦ = π½) β (π₯ Β· π¦) = (πΌ Β· π½)) | |
11 | 10 | adantl 482 | . . 3 β’ ((π β§ (π₯ = πΌ β§ π¦ = π½)) β (π₯ Β· π¦) = (πΌ Β· π½)) |
12 | 11 | fveq2d 6895 | . 2 β’ ((π β§ (π₯ = πΌ β§ π¦ = π½)) β ((RSpanβπ )β(π₯ Β· π¦)) = ((RSpanβπ )β(πΌ Β· π½))) |
13 | idlsrgmulrval.7 | . 2 β’ (π β πΌ β π΅) | |
14 | idlsrgmulrval.8 | . 2 β’ (π β π½ β π΅) | |
15 | fvexd 6906 | . 2 β’ (π β ((RSpanβπ )β(πΌ Β· π½)) β V) | |
16 | 9, 12, 13, 14, 15 | ovmpod 7559 | 1 β’ (π β (πΌ β π½) = ((RSpanβπ )β(πΌ Β· π½))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 βcfv 6543 (class class class)co 7408 β cmpo 7410 .rcmulr 17197 LSSumclsm 19501 mulGrpcmgp 19986 LIdealclidl 20782 RSpancrsp 20783 IDLsrgcidlsrg 32609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ple 17216 df-idlsrg 32610 |
This theorem is referenced by: idlsrgmulrcl 32619 idlsrgmulrss1 32620 idlsrgmulrss2 32621 zarclsun 32845 |
Copyright terms: Public domain | W3C validator |