Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem16 Structured version   Visualization version   GIF version

Theorem knoppndvlem16 36528
Description: Lemma for knoppndv 36535. (Contributed by Asger C. Ipsen, 19-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem16.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem16.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem16.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem16.m (𝜑𝑀 ∈ ℤ)
knoppndvlem16.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem16 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))

Proof of Theorem knoppndvlem16
StepHypRef Expression
1 knoppndvlem16.b . . . 4 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
21a1i 11 . . 3 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
3 knoppndvlem16.a . . . 4 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
43a1i 11 . . 3 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
52, 4oveq12d 7449 . 2 (𝜑 → (𝐵𝐴) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
6 2cnd 12344 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
7 knoppndvlem16.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
87nncnd 12282 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
96, 8mulcld 11281 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
10 2ne0 12370 . . . . . . . 8 2 ≠ 0
1110a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
127nnne0d 12316 . . . . . . 7 (𝜑𝑁 ≠ 0)
136, 8, 11, 12mulne0d 11915 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
14 knoppndvlem16.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
1514nn0zd 12639 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
1615znegcld 12724 . . . . . 6 (𝜑 → -𝐽 ∈ ℤ)
179, 13, 16expclzd 14191 . . . . 5 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
186, 8, 13mulne0bad 11918 . . . . 5 (𝜑 → 2 ≠ 0)
1917, 6, 18divcld 12043 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
20 knoppndvlem16.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2120zcnd 12723 . . . . 5 (𝜑𝑀 ∈ ℂ)
22 1cnd 11256 . . . . 5 (𝜑 → 1 ∈ ℂ)
2321, 22addcld 11280 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℂ)
2419, 23, 21subdid 11719 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
2524eqcomd 2743 . 2 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)))
2621, 22pncan2d 11622 . . . 4 (𝜑 → ((𝑀 + 1) − 𝑀) = 1)
2726oveq2d 7447 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · 1))
2819mulridd 11278 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 1) = (((2 · 𝑁)↑-𝐽) / 2))
2927, 28eqtrd 2777 . 2 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((2 · 𝑁)↑-𝐽) / 2))
305, 25, 293eqtrd 2781 1 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  knoppndvlem17  36529  knoppndvlem21  36533
  Copyright terms: Public domain W3C validator