![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem16 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 36237. (Contributed by Asger C. Ipsen, 19-Jul-2021.) |
Ref | Expression |
---|---|
knoppndvlem16.a | ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) |
knoppndvlem16.b | ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) |
knoppndvlem16.j | ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
knoppndvlem16.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
knoppndvlem16.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
knoppndvlem16 | ⊢ (𝜑 → (𝐵 − 𝐴) = (((2 · 𝑁)↑-𝐽) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem16.b | . . . 4 ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))) |
3 | knoppndvlem16.a | . . . 4 ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) |
5 | 2, 4 | oveq12d 7442 | . 2 ⊢ (𝜑 → (𝐵 − 𝐴) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))) |
6 | 2cnd 12342 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℂ) | |
7 | knoppndvlem16.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 7 | nncnd 12280 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
9 | 6, 8 | mulcld 11284 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑁) ∈ ℂ) |
10 | 2ne0 12368 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
12 | 7 | nnne0d 12314 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ≠ 0) |
13 | 6, 8, 11, 12 | mulne0d 11916 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑁) ≠ 0) |
14 | knoppndvlem16.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℕ0) | |
15 | 14 | nn0zd 12636 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
16 | 15 | znegcld 12720 | . . . . . 6 ⊢ (𝜑 → -𝐽 ∈ ℤ) |
17 | 9, 13, 16 | expclzd 14170 | . . . . 5 ⊢ (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ) |
18 | 6, 8, 13 | mulne0bad 11919 | . . . . 5 ⊢ (𝜑 → 2 ≠ 0) |
19 | 17, 6, 18 | divcld 12041 | . . . 4 ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ) |
20 | knoppndvlem16.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
21 | 20 | zcnd 12719 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
22 | 1cnd 11259 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
23 | 21, 22 | addcld 11283 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ ℂ) |
24 | 19, 23, 21 | subdid 11720 | . . 3 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))) |
25 | 24 | eqcomd 2732 | . 2 ⊢ (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀))) |
26 | 21, 22 | pncan2d 11623 | . . . 4 ⊢ (𝜑 → ((𝑀 + 1) − 𝑀) = 1) |
27 | 26 | oveq2d 7440 | . . 3 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · 1)) |
28 | 19 | mulridd 11281 | . . 3 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 1) = (((2 · 𝑁)↑-𝐽) / 2)) |
29 | 27, 28 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((2 · 𝑁)↑-𝐽) / 2)) |
30 | 5, 25, 29 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (((2 · 𝑁)↑-𝐽) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 (class class class)co 7424 0cc0 11158 1c1 11159 + caddc 11161 · cmul 11163 − cmin 11494 -cneg 11495 / cdiv 11921 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℤcz 12610 ↑cexp 14081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-seq 14022 df-exp 14082 |
This theorem is referenced by: knoppndvlem17 36231 knoppndvlem21 36235 |
Copyright terms: Public domain | W3C validator |