Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem16 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 34775. (Contributed by Asger C. Ipsen, 19-Jul-2021.) |
Ref | Expression |
---|---|
knoppndvlem16.a | ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) |
knoppndvlem16.b | ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) |
knoppndvlem16.j | ⊢ (𝜑 → 𝐽 ∈ ℕ0) |
knoppndvlem16.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
knoppndvlem16.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
knoppndvlem16 | ⊢ (𝜑 → (𝐵 − 𝐴) = (((2 · 𝑁)↑-𝐽) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem16.b | . . . 4 ⊢ 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))) |
3 | knoppndvlem16.a | . . . 4 ⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) |
5 | 2, 4 | oveq12d 7331 | . 2 ⊢ (𝜑 → (𝐵 − 𝐴) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))) |
6 | 2cnd 12121 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℂ) | |
7 | knoppndvlem16.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | 7 | nncnd 12059 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
9 | 6, 8 | mulcld 11065 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑁) ∈ ℂ) |
10 | 2ne0 12147 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
11 | 10 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 ≠ 0) |
12 | 7 | nnne0d 12093 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ≠ 0) |
13 | 6, 8, 11, 12 | mulne0d 11697 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑁) ≠ 0) |
14 | knoppndvlem16.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ ℕ0) | |
15 | 14 | nn0zd 12494 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ ℤ) |
16 | 15 | znegcld 12498 | . . . . . 6 ⊢ (𝜑 → -𝐽 ∈ ℤ) |
17 | 9, 13, 16 | expclzd 13939 | . . . . 5 ⊢ (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ) |
18 | 6, 8, 13 | mulne0bad 11700 | . . . . 5 ⊢ (𝜑 → 2 ≠ 0) |
19 | 17, 6, 18 | divcld 11821 | . . . 4 ⊢ (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ) |
20 | knoppndvlem16.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
21 | 20 | zcnd 12497 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
22 | 1cnd 11040 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℂ) | |
23 | 21, 22 | addcld 11064 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ ℂ) |
24 | 19, 23, 21 | subdid 11501 | . . 3 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))) |
25 | 24 | eqcomd 2743 | . 2 ⊢ (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀))) |
26 | 21, 22 | pncan2d 11404 | . . . 4 ⊢ (𝜑 → ((𝑀 + 1) − 𝑀) = 1) |
27 | 26 | oveq2d 7329 | . . 3 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · 1)) |
28 | 19 | mulid1d 11062 | . . 3 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 1) = (((2 · 𝑁)↑-𝐽) / 2)) |
29 | 27, 28 | eqtrd 2777 | . 2 ⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((2 · 𝑁)↑-𝐽) / 2)) |
30 | 5, 25, 29 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (𝐵 − 𝐴) = (((2 · 𝑁)↑-𝐽) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 (class class class)co 7313 0cc0 10941 1c1 10942 + caddc 10944 · cmul 10946 − cmin 11275 -cneg 11276 / cdiv 11702 ℕcn 12043 2c2 12098 ℕ0cn0 12303 ℤcz 12389 ↑cexp 13852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-n0 12304 df-z 12390 df-uz 12653 df-seq 13792 df-exp 13853 |
This theorem is referenced by: knoppndvlem17 34769 knoppndvlem21 34773 |
Copyright terms: Public domain | W3C validator |