Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem16 Structured version   Visualization version   GIF version

Theorem knoppndvlem16 36501
Description: Lemma for knoppndv 36508. (Contributed by Asger C. Ipsen, 19-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem16.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem16.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem16.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem16.m (𝜑𝑀 ∈ ℤ)
knoppndvlem16.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem16 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))

Proof of Theorem knoppndvlem16
StepHypRef Expression
1 knoppndvlem16.b . . . 4 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
21a1i 11 . . 3 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
3 knoppndvlem16.a . . . 4 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
43a1i 11 . . 3 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
52, 4oveq12d 7367 . 2 (𝜑 → (𝐵𝐴) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
6 2cnd 12206 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
7 knoppndvlem16.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
87nncnd 12144 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
96, 8mulcld 11135 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
10 2ne0 12232 . . . . . . . 8 2 ≠ 0
1110a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
127nnne0d 12178 . . . . . . 7 (𝜑𝑁 ≠ 0)
136, 8, 11, 12mulne0d 11772 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
14 knoppndvlem16.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
1514nn0zd 12497 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
1615znegcld 12582 . . . . . 6 (𝜑 → -𝐽 ∈ ℤ)
179, 13, 16expclzd 14058 . . . . 5 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
186, 8, 13mulne0bad 11775 . . . . 5 (𝜑 → 2 ≠ 0)
1917, 6, 18divcld 11900 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
20 knoppndvlem16.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2120zcnd 12581 . . . . 5 (𝜑𝑀 ∈ ℂ)
22 1cnd 11110 . . . . 5 (𝜑 → 1 ∈ ℂ)
2321, 22addcld 11134 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℂ)
2419, 23, 21subdid 11576 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
2524eqcomd 2735 . 2 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)))
2621, 22pncan2d 11477 . . . 4 (𝜑 → ((𝑀 + 1) − 𝑀) = 1)
2726oveq2d 7365 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · 1))
2819mulridd 11132 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 1) = (((2 · 𝑁)↑-𝐽) / 2))
2927, 28eqtrd 2764 . 2 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((2 · 𝑁)↑-𝐽) / 2))
305, 25, 293eqtrd 2768 1 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  cz 12471  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-exp 13969
This theorem is referenced by:  knoppndvlem17  36502  knoppndvlem21  36506
  Copyright terms: Public domain W3C validator