Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem16 Structured version   Visualization version   GIF version

Theorem knoppndvlem16 34768
Description: Lemma for knoppndv 34775. (Contributed by Asger C. Ipsen, 19-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem16.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem16.b 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
knoppndvlem16.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem16.m (𝜑𝑀 ∈ ℤ)
knoppndvlem16.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem16 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))

Proof of Theorem knoppndvlem16
StepHypRef Expression
1 knoppndvlem16.b . . . 4 𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1))
21a1i 11 . . 3 (𝜑𝐵 = ((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)))
3 knoppndvlem16.a . . . 4 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
43a1i 11 . . 3 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
52, 4oveq12d 7331 . 2 (𝜑 → (𝐵𝐴) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
6 2cnd 12121 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
7 knoppndvlem16.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
87nncnd 12059 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
96, 8mulcld 11065 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
10 2ne0 12147 . . . . . . . 8 2 ≠ 0
1110a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
127nnne0d 12093 . . . . . . 7 (𝜑𝑁 ≠ 0)
136, 8, 11, 12mulne0d 11697 . . . . . 6 (𝜑 → (2 · 𝑁) ≠ 0)
14 knoppndvlem16.j . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
1514nn0zd 12494 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
1615znegcld 12498 . . . . . 6 (𝜑 → -𝐽 ∈ ℤ)
179, 13, 16expclzd 13939 . . . . 5 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
186, 8, 13mulne0bad 11700 . . . . 5 (𝜑 → 2 ≠ 0)
1917, 6, 18divcld 11821 . . . 4 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
20 knoppndvlem16.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
2120zcnd 12497 . . . . 5 (𝜑𝑀 ∈ ℂ)
22 1cnd 11040 . . . . 5 (𝜑 → 1 ∈ ℂ)
2321, 22addcld 11064 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℂ)
2419, 23, 21subdid 11501 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
2524eqcomd 2743 . 2 (𝜑 → (((((2 · 𝑁)↑-𝐽) / 2) · (𝑀 + 1)) − ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)))
2621, 22pncan2d 11404 . . . 4 (𝜑 → ((𝑀 + 1) − 𝑀) = 1)
2726oveq2d 7329 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = ((((2 · 𝑁)↑-𝐽) / 2) · 1))
2819mulid1d 11062 . . 3 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 1) = (((2 · 𝑁)↑-𝐽) / 2))
2927, 28eqtrd 2777 . 2 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · ((𝑀 + 1) − 𝑀)) = (((2 · 𝑁)↑-𝐽) / 2))
305, 25, 293eqtrd 2781 1 (𝜑 → (𝐵𝐴) = (((2 · 𝑁)↑-𝐽) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wne 2941  (class class class)co 7313  0cc0 10941  1c1 10942   + caddc 10944   · cmul 10946  cmin 11275  -cneg 11276   / cdiv 11702  cn 12043  2c2 12098  0cn0 12303  cz 12389  cexp 13852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-n0 12304  df-z 12390  df-uz 12653  df-seq 13792  df-exp 13853
This theorem is referenced by:  knoppndvlem17  34769  knoppndvlem21  34773
  Copyright terms: Public domain W3C validator