![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvs | Structured version Visualization version GIF version |
Description: Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | β’ πΉ = (LFnlβπ) |
ldualfvs.v | β’ π = (Baseβπ) |
ldualfvs.r | β’ π = (Scalarβπ) |
ldualfvs.k | β’ πΎ = (Baseβπ ) |
ldualfvs.t | β’ Γ = (.rβπ ) |
ldualfvs.d | β’ π· = (LDualβπ) |
ldualfvs.s | β’ β = ( Β·π βπ·) |
ldualfvs.w | β’ (π β π β π) |
ldualvs.x | β’ (π β π β πΎ) |
ldualvs.g | β’ (π β πΊ β πΉ) |
Ref | Expression |
---|---|
ldualvs | β’ (π β (π β πΊ) = (πΊ βf Γ (π Γ {π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.f | . . . 4 β’ πΉ = (LFnlβπ) | |
2 | ldualfvs.v | . . . 4 β’ π = (Baseβπ) | |
3 | ldualfvs.r | . . . 4 β’ π = (Scalarβπ) | |
4 | ldualfvs.k | . . . 4 β’ πΎ = (Baseβπ ) | |
5 | ldualfvs.t | . . . 4 β’ Γ = (.rβπ ) | |
6 | ldualfvs.d | . . . 4 β’ π· = (LDualβπ) | |
7 | ldualfvs.s | . . . 4 β’ β = ( Β·π βπ·) | |
8 | ldualfvs.w | . . . 4 β’ (π β π β π) | |
9 | eqid 2730 | . . . 4 β’ (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) = (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π}))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ldualfvs 38309 | . . 3 β’ (π β β = (π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))) |
11 | 10 | oveqd 7428 | . 2 β’ (π β (π β πΊ) = (π(π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))πΊ)) |
12 | ldualvs.x | . . 3 β’ (π β π β πΎ) | |
13 | ldualvs.g | . . 3 β’ (π β πΊ β πΉ) | |
14 | sneq 4637 | . . . . . 6 β’ (π = π β {π} = {π}) | |
15 | 14 | xpeq2d 5705 | . . . . 5 β’ (π = π β (π Γ {π}) = (π Γ {π})) |
16 | 15 | oveq2d 7427 | . . . 4 β’ (π = π β (π βf Γ (π Γ {π})) = (π βf Γ (π Γ {π}))) |
17 | oveq1 7418 | . . . 4 β’ (π = πΊ β (π βf Γ (π Γ {π})) = (πΊ βf Γ (π Γ {π}))) | |
18 | ovex 7444 | . . . 4 β’ (πΊ βf Γ (π Γ {π})) β V | |
19 | 16, 17, 9, 18 | ovmpo 7570 | . . 3 β’ ((π β πΎ β§ πΊ β πΉ) β (π(π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))πΊ) = (πΊ βf Γ (π Γ {π}))) |
20 | 12, 13, 19 | syl2anc 582 | . 2 β’ (π β (π(π β πΎ, π β πΉ β¦ (π βf Γ (π Γ {π})))πΊ) = (πΊ βf Γ (π Γ {π}))) |
21 | 11, 20 | eqtrd 2770 | 1 β’ (π β (π β πΊ) = (πΊ βf Γ (π Γ {π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 {csn 4627 Γ cxp 5673 βcfv 6542 (class class class)co 7411 β cmpo 7413 βf cof 7670 Basecbs 17148 .rcmulr 17202 Scalarcsca 17204 Β·π cvsca 17205 LFnlclfn 38230 LDualcld 38296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-sca 17217 df-vsca 17218 df-ldual 38297 |
This theorem is referenced by: ldualvsval 38311 ldualvscl 38312 ldualvsass 38314 ldualvsdi1 38316 ldualvsdi2 38317 lduallmodlem 38325 eqlkr4 38338 ldual1dim 38339 ldualkrsc 38340 lkrss 38341 |
Copyright terms: Public domain | W3C validator |