Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvs | Structured version Visualization version GIF version |
Description: Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualfvs.t | ⊢ × = (.r‘𝑅) |
ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ldualvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
ldualvs.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvs | ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
4 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
5 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
6 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
7 | ldualfvs.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
8 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
9 | eqid 2738 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ldualfvs 37077 | . . 3 ⊢ (𝜑 → ∙ = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))) |
11 | 10 | oveqd 7272 | . 2 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))𝐺)) |
12 | ldualvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
13 | ldualvs.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
14 | sneq 4568 | . . . . . 6 ⊢ (𝑘 = 𝑋 → {𝑘} = {𝑋}) | |
15 | 14 | xpeq2d 5610 | . . . . 5 ⊢ (𝑘 = 𝑋 → (𝑉 × {𝑘}) = (𝑉 × {𝑋})) |
16 | 15 | oveq2d 7271 | . . . 4 ⊢ (𝑘 = 𝑋 → (𝑓 ∘f × (𝑉 × {𝑘})) = (𝑓 ∘f × (𝑉 × {𝑋}))) |
17 | oveq1 7262 | . . . 4 ⊢ (𝑓 = 𝐺 → (𝑓 ∘f × (𝑉 × {𝑋})) = (𝐺 ∘f × (𝑉 × {𝑋}))) | |
18 | ovex 7288 | . . . 4 ⊢ (𝐺 ∘f × (𝑉 × {𝑋})) ∈ V | |
19 | 16, 17, 9, 18 | ovmpo 7411 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝐺 ∈ 𝐹) → (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
20 | 12, 13, 19 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
21 | 11, 20 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ∘f cof 7509 Basecbs 16840 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 LFnlclfn 36998 LDualcld 37064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-sca 16904 df-vsca 16905 df-ldual 37065 |
This theorem is referenced by: ldualvsval 37079 ldualvscl 37080 ldualvsass 37082 ldualvsdi1 37084 ldualvsdi2 37085 lduallmodlem 37093 eqlkr4 37106 ldual1dim 37107 ldualkrsc 37108 lkrss 37109 |
Copyright terms: Public domain | W3C validator |