| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvs | Structured version Visualization version GIF version | ||
| Description: Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
| ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
| ldualfvs.t | ⊢ × = (.r‘𝑅) |
| ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
| ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
| ldualvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| ldualvs.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ldualvs | ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 2 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 4 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 5 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 6 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 7 | ldualfvs.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
| 8 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
| 9 | eqid 2729 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ldualfvs 39129 | . . 3 ⊢ (𝜑 → ∙ = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))) |
| 11 | 10 | oveqd 7404 | . 2 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))𝐺)) |
| 12 | ldualvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 13 | ldualvs.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 14 | sneq 4599 | . . . . . 6 ⊢ (𝑘 = 𝑋 → {𝑘} = {𝑋}) | |
| 15 | 14 | xpeq2d 5668 | . . . . 5 ⊢ (𝑘 = 𝑋 → (𝑉 × {𝑘}) = (𝑉 × {𝑋})) |
| 16 | 15 | oveq2d 7403 | . . . 4 ⊢ (𝑘 = 𝑋 → (𝑓 ∘f × (𝑉 × {𝑘})) = (𝑓 ∘f × (𝑉 × {𝑋}))) |
| 17 | oveq1 7394 | . . . 4 ⊢ (𝑓 = 𝐺 → (𝑓 ∘f × (𝑉 × {𝑋})) = (𝐺 ∘f × (𝑉 × {𝑋}))) | |
| 18 | ovex 7420 | . . . 4 ⊢ (𝐺 ∘f × (𝑉 × {𝑋})) ∈ V | |
| 19 | 16, 17, 9, 18 | ovmpo 7549 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝐺 ∈ 𝐹) → (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
| 20 | 12, 13, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
| 21 | 11, 20 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ∘f cof 7651 Basecbs 17179 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 LFnlclfn 39050 LDualcld 39116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-sca 17236 df-vsca 17237 df-ldual 39117 |
| This theorem is referenced by: ldualvsval 39131 ldualvscl 39132 ldualvsass 39134 ldualvsdi1 39136 ldualvsdi2 39137 lduallmodlem 39145 eqlkr4 39158 ldual1dim 39159 ldualkrsc 39160 lkrss 39161 |
| Copyright terms: Public domain | W3C validator |