![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvs | Structured version Visualization version GIF version |
Description: Scalar product operation value (which is a functional) for the dual of a vector space. (Contributed by NM, 18-Oct-2014.) |
Ref | Expression |
---|---|
ldualfvs.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualfvs.v | ⊢ 𝑉 = (Base‘𝑊) |
ldualfvs.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualfvs.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualfvs.t | ⊢ × = (.r‘𝑅) |
ldualfvs.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualfvs.s | ⊢ ∙ = ( ·𝑠 ‘𝐷) |
ldualfvs.w | ⊢ (𝜑 → 𝑊 ∈ 𝑌) |
ldualvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
ldualvs.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvs | ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualfvs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | ldualfvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | ldualfvs.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
4 | ldualfvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
5 | ldualfvs.t | . . . 4 ⊢ × = (.r‘𝑅) | |
6 | ldualfvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
7 | ldualfvs.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐷) | |
8 | ldualfvs.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑌) | |
9 | eqid 2735 | . . . 4 ⊢ (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘}))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ldualfvs 39118 | . . 3 ⊢ (𝜑 → ∙ = (𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))) |
11 | 10 | oveqd 7448 | . 2 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))𝐺)) |
12 | ldualvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
13 | ldualvs.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
14 | sneq 4641 | . . . . . 6 ⊢ (𝑘 = 𝑋 → {𝑘} = {𝑋}) | |
15 | 14 | xpeq2d 5719 | . . . . 5 ⊢ (𝑘 = 𝑋 → (𝑉 × {𝑘}) = (𝑉 × {𝑋})) |
16 | 15 | oveq2d 7447 | . . . 4 ⊢ (𝑘 = 𝑋 → (𝑓 ∘f × (𝑉 × {𝑘})) = (𝑓 ∘f × (𝑉 × {𝑋}))) |
17 | oveq1 7438 | . . . 4 ⊢ (𝑓 = 𝐺 → (𝑓 ∘f × (𝑉 × {𝑋})) = (𝐺 ∘f × (𝑉 × {𝑋}))) | |
18 | ovex 7464 | . . . 4 ⊢ (𝐺 ∘f × (𝑉 × {𝑋})) ∈ V | |
19 | 16, 17, 9, 18 | ovmpo 7593 | . . 3 ⊢ ((𝑋 ∈ 𝐾 ∧ 𝐺 ∈ 𝐹) → (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
20 | 12, 13, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋(𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 ↦ (𝑓 ∘f × (𝑉 × {𝑘})))𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
21 | 11, 20 | eqtrd 2775 | 1 ⊢ (𝜑 → (𝑋 ∙ 𝐺) = (𝐺 ∘f × (𝑉 × {𝑋}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {csn 4631 × cxp 5687 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ∘f cof 7695 Basecbs 17245 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 LFnlclfn 39039 LDualcld 39105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-sca 17314 df-vsca 17315 df-ldual 39106 |
This theorem is referenced by: ldualvsval 39120 ldualvscl 39121 ldualvsass 39123 ldualvsdi1 39125 ldualvsdi2 39126 lduallmodlem 39134 eqlkr4 39147 ldual1dim 39148 ldualkrsc 39149 lkrss 39150 |
Copyright terms: Public domain | W3C validator |