Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit1 Structured version   Visualization version   GIF version

Theorem lincresunit1 46648
Description: Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐡 = (Baseβ€˜π‘€)
lincresunit.r 𝑅 = (Scalarβ€˜π‘€)
lincresunit.e 𝐸 = (Baseβ€˜π‘…)
lincresunit.u π‘ˆ = (Unitβ€˜π‘…)
lincresunit.0 0 = (0gβ€˜π‘…)
lincresunit.z 𝑍 = (0gβ€˜π‘€)
lincresunit.n 𝑁 = (invgβ€˜π‘…)
lincresunit.i 𝐼 = (invrβ€˜π‘…)
lincresunit.t Β· = (.rβ€˜π‘…)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ )))
Assertion
Ref Expression
lincresunit1 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ 𝐺 ∈ (𝐸 ↑m (𝑆 βˆ– {𝑋})))
Distinct variable groups:   𝐡,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   π‘ˆ,𝑠
Allowed substitution hints:   𝑅(𝑠)   Β· (𝑠)   𝐺(𝑠)   𝐼(𝑠)   𝑁(𝑠)   0 (𝑠)   𝑍(𝑠)

Proof of Theorem lincresunit1
StepHypRef Expression
1 lincresunit.g . 2 𝐺 = (𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ )))
2 eldifi 4090 . . . . 5 (𝑠 ∈ (𝑆 βˆ– {𝑋}) β†’ 𝑠 ∈ 𝑆)
3 lincresunit.b . . . . . 6 𝐡 = (Baseβ€˜π‘€)
4 lincresunit.r . . . . . 6 𝑅 = (Scalarβ€˜π‘€)
5 lincresunit.e . . . . . 6 𝐸 = (Baseβ€˜π‘…)
6 lincresunit.u . . . . . 6 π‘ˆ = (Unitβ€˜π‘…)
7 lincresunit.0 . . . . . 6 0 = (0gβ€˜π‘…)
8 lincresunit.z . . . . . 6 𝑍 = (0gβ€˜π‘€)
9 lincresunit.n . . . . . 6 𝑁 = (invgβ€˜π‘…)
10 lincresunit.i . . . . . 6 𝐼 = (invrβ€˜π‘…)
11 lincresunit.t . . . . . 6 Β· = (.rβ€˜π‘…)
123, 4, 5, 6, 7, 8, 9, 10, 11, 1lincresunitlem2 46647 . . . . 5 ((((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) ∧ 𝑠 ∈ 𝑆) β†’ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ )) ∈ 𝐸)
132, 12sylan2 594 . . . 4 ((((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) ∧ 𝑠 ∈ (𝑆 βˆ– {𝑋})) β†’ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ )) ∈ 𝐸)
1413fmpttd 7067 . . 3 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ (𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ ))):(𝑆 βˆ– {𝑋})⟢𝐸)
155fvexi 6860 . . . 4 𝐸 ∈ V
16 difexg 5288 . . . . . 6 (𝑆 ∈ 𝒫 𝐡 β†’ (𝑆 βˆ– {𝑋}) ∈ V)
17163ad2ant1 1134 . . . . 5 ((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) β†’ (𝑆 βˆ– {𝑋}) ∈ V)
1817adantr 482 . . . 4 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ (𝑆 βˆ– {𝑋}) ∈ V)
19 elmapg 8784 . . . 4 ((𝐸 ∈ V ∧ (𝑆 βˆ– {𝑋}) ∈ V) β†’ ((𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ ))) ∈ (𝐸 ↑m (𝑆 βˆ– {𝑋})) ↔ (𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ ))):(𝑆 βˆ– {𝑋})⟢𝐸))
2015, 18, 19sylancr 588 . . 3 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ ((𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ ))) ∈ (𝐸 ↑m (𝑆 βˆ– {𝑋})) ↔ (𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ ))):(𝑆 βˆ– {𝑋})⟢𝐸))
2114, 20mpbird 257 . 2 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ (𝑠 ∈ (𝑆 βˆ– {𝑋}) ↦ ((πΌβ€˜(π‘β€˜(πΉβ€˜π‘‹))) Β· (πΉβ€˜π‘ ))) ∈ (𝐸 ↑m (𝑆 βˆ– {𝑋})))
221, 21eqeltrid 2838 1 (((𝑆 ∈ 𝒫 𝐡 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (πΉβ€˜π‘‹) ∈ π‘ˆ)) β†’ 𝐺 ∈ (𝐸 ↑m (𝑆 βˆ– {𝑋})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  Vcvv 3447   βˆ– cdif 3911  π’« cpw 4564  {csn 4590   ↦ cmpt 5192  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361   ↑m cmap 8771  Basecbs 17091  .rcmulr 17142  Scalarcsca 17144  0gc0g 17329  invgcminusg 18757  Unitcui 20076  invrcinvr 20108  LModclmod 20365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-tpos 8161  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-0g 17331  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-grp 18759  df-minusg 18760  df-mgp 19905  df-ur 19922  df-ring 19974  df-oppr 20057  df-dvdsr 20078  df-unit 20079  df-invr 20109  df-lmod 20367
This theorem is referenced by:  lincresunit3lem2  46651  lincresunit3  46652  isldepslvec2  46656
  Copyright terms: Public domain W3C validator