| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincresunit1 | Structured version Visualization version GIF version | ||
| Description: Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| Ref | Expression |
|---|---|
| lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) |
| lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) |
| lincresunit.0 | ⊢ 0 = (0g‘𝑅) |
| lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) |
| lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) |
| lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) |
| lincresunit.t | ⊢ · = (.r‘𝑅) |
| lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
| Ref | Expression |
|---|---|
| lincresunit1 | ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lincresunit.g | . 2 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
| 2 | eldifi 4131 | . . . . 5 ⊢ (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝑆) | |
| 3 | lincresunit.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 4 | lincresunit.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 5 | lincresunit.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑅) | |
| 6 | lincresunit.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | lincresunit.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 8 | lincresunit.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑀) | |
| 9 | lincresunit.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
| 10 | lincresunit.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
| 11 | lincresunit.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 12 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 1 | lincresunitlem2 48393 | . . . . 5 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑠 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
| 13 | 2, 12 | sylan2 593 | . . . 4 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
| 14 | 13 | fmpttd 7135 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))):(𝑆 ∖ {𝑋})⟶𝐸) |
| 15 | 5 | fvexi 6920 | . . . 4 ⊢ 𝐸 ∈ V |
| 16 | difexg 5329 | . . . . . 6 ⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V) | |
| 17 | 16 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ V) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑆 ∖ {𝑋}) ∈ V) |
| 19 | elmapg 8879 | . . . 4 ⊢ ((𝐸 ∈ V ∧ (𝑆 ∖ {𝑋}) ∈ V) → ((𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) ↔ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))):(𝑆 ∖ {𝑋})⟶𝐸)) | |
| 20 | 15, 18, 19 | sylancr 587 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → ((𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) ↔ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))):(𝑆 ∖ {𝑋})⟶𝐸)) |
| 21 | 14, 20 | mpbird 257 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
| 22 | 1, 21 | eqeltrid 2845 | 1 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 𝒫 cpw 4600 {csn 4626 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 Basecbs 17247 .rcmulr 17298 Scalarcsca 17300 0gc0g 17484 invgcminusg 18952 Unitcui 20355 invrcinvr 20387 LModclmod 20858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-lmod 20860 |
| This theorem is referenced by: lincresunit3lem2 48397 lincresunit3 48398 isldepslvec2 48402 |
| Copyright terms: Public domain | W3C validator |