Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit1 Structured version   Visualization version   GIF version

Theorem lincresunit1 48509
Description: Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠
Allowed substitution hints:   𝑅(𝑠)   · (𝑠)   𝐺(𝑠)   𝐼(𝑠)   𝑁(𝑠)   0 (𝑠)   𝑍(𝑠)

Proof of Theorem lincresunit1
StepHypRef Expression
1 lincresunit.g . 2 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
2 eldifi 4076 . . . . 5 (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠𝑆)
3 lincresunit.b . . . . . 6 𝐵 = (Base‘𝑀)
4 lincresunit.r . . . . . 6 𝑅 = (Scalar‘𝑀)
5 lincresunit.e . . . . . 6 𝐸 = (Base‘𝑅)
6 lincresunit.u . . . . . 6 𝑈 = (Unit‘𝑅)
7 lincresunit.0 . . . . . 6 0 = (0g𝑅)
8 lincresunit.z . . . . . 6 𝑍 = (0g𝑀)
9 lincresunit.n . . . . . 6 𝑁 = (invg𝑅)
10 lincresunit.i . . . . . 6 𝐼 = (invr𝑅)
11 lincresunit.t . . . . . 6 · = (.r𝑅)
123, 4, 5, 6, 7, 8, 9, 10, 11, 1lincresunitlem2 48508 . . . . 5 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
132, 12sylan2 593 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) ∈ 𝐸)
1413fmpttd 7043 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))):(𝑆 ∖ {𝑋})⟶𝐸)
155fvexi 6831 . . . 4 𝐸 ∈ V
16 difexg 5262 . . . . . 6 (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V)
17163ad2ant1 1133 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → (𝑆 ∖ {𝑋}) ∈ V)
1817adantr 480 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝑆 ∖ {𝑋}) ∈ V)
19 elmapg 8758 . . . 4 ((𝐸 ∈ V ∧ (𝑆 ∖ {𝑋}) ∈ V) → ((𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))) ∈ (𝐸m (𝑆 ∖ {𝑋})) ↔ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))):(𝑆 ∖ {𝑋})⟶𝐸))
2015, 18, 19sylancr 587 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → ((𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))) ∈ (𝐸m (𝑆 ∖ {𝑋})) ↔ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))):(𝑆 ∖ {𝑋})⟶𝐸))
2114, 20mpbird 257 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠))) ∈ (𝐸m (𝑆 ∖ {𝑋})))
221, 21eqeltrid 2835 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸m (𝑆 ∖ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  𝒫 cpw 4545  {csn 4571  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  m cmap 8745  Basecbs 17115  .rcmulr 17157  Scalarcsca 17159  0gc0g 17338  invgcminusg 18842  Unitcui 20268  invrcinvr 20300  LModclmod 20788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-lmod 20790
This theorem is referenced by:  lincresunit3lem2  48512  lincresunit3  48513  isldepslvec2  48517
  Copyright terms: Public domain W3C validator