| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lincresunit1 | Structured version Visualization version GIF version | ||
| Description: Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| Ref | Expression |
|---|---|
| lincresunit.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincresunit.r | ⊢ 𝑅 = (Scalar‘𝑀) |
| lincresunit.e | ⊢ 𝐸 = (Base‘𝑅) |
| lincresunit.u | ⊢ 𝑈 = (Unit‘𝑅) |
| lincresunit.0 | ⊢ 0 = (0g‘𝑅) |
| lincresunit.z | ⊢ 𝑍 = (0g‘𝑀) |
| lincresunit.n | ⊢ 𝑁 = (invg‘𝑅) |
| lincresunit.i | ⊢ 𝐼 = (invr‘𝑅) |
| lincresunit.t | ⊢ · = (.r‘𝑅) |
| lincresunit.g | ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
| Ref | Expression |
|---|---|
| lincresunit1 | ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lincresunit.g | . 2 ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | |
| 2 | eldifi 4082 | . . . . 5 ⊢ (𝑠 ∈ (𝑆 ∖ {𝑋}) → 𝑠 ∈ 𝑆) | |
| 3 | lincresunit.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 4 | lincresunit.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑀) | |
| 5 | lincresunit.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑅) | |
| 6 | lincresunit.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | lincresunit.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 8 | lincresunit.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑀) | |
| 9 | lincresunit.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
| 10 | lincresunit.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
| 11 | lincresunit.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 12 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 1 | lincresunitlem2 48461 | . . . . 5 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑠 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
| 13 | 2, 12 | sylan2 593 | . . . 4 ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑠 ∈ (𝑆 ∖ {𝑋})) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) ∈ 𝐸) |
| 14 | 13 | fmpttd 7049 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))):(𝑆 ∖ {𝑋})⟶𝐸) |
| 15 | 5 | fvexi 6836 | . . . 4 ⊢ 𝐸 ∈ V |
| 16 | difexg 5268 | . . . . . 6 ⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑆 ∖ {𝑋}) ∈ V) | |
| 17 | 16 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → (𝑆 ∖ {𝑋}) ∈ V) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑆 ∖ {𝑋}) ∈ V) |
| 19 | elmapg 8766 | . . . 4 ⊢ ((𝐸 ∈ V ∧ (𝑆 ∖ {𝑋}) ∈ V) → ((𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) ↔ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))):(𝑆 ∖ {𝑋})⟶𝐸)) | |
| 20 | 15, 18, 19 | sylancr 587 | . . 3 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → ((𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})) ↔ (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))):(𝑆 ∖ {𝑋})⟶𝐸)) |
| 21 | 14, 20 | mpbird 257 | . 2 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
| 22 | 1, 21 | eqeltrid 2832 | 1 ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∖ cdif 3900 𝒫 cpw 4551 {csn 4577 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 Basecbs 17120 .rcmulr 17162 Scalarcsca 17164 0gc0g 17343 invgcminusg 18813 Unitcui 20240 invrcinvr 20272 LModclmod 20763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-lmod 20765 |
| This theorem is referenced by: lincresunit3lem2 48465 lincresunit3 48466 isldepslvec2 48470 |
| Copyright terms: Public domain | W3C validator |